Solveeit Logo

Question

Question: Solve the following equation :\(\dfrac{{3{x^4} + {x^2} - 2x - 3}}{{3{x^4} - {x^2} + 2x + 3}} = \dfra...

Solve the following equation :3x4+x22x33x4x2+2x+3=5x4+2x27x+35x42x2+7x3\dfrac{{3{x^4} + {x^2} - 2x - 3}}{{3{x^4} - {x^2} + 2x + 3}} = \dfrac{{5{x^4} + 2{x^2} - 7x + 3}}{{5{x^4} - 2{x^2} + 7x - 3}}.

Explanation

Solution

Hint: Here, we go through by rearranging the equation so that we eliminate it easily and factorise the final equation to find the value of x.

Complete step-by-step answer:
We will rewrite question as
3x4+3x43x4+x22x33x4x2+2x+3=5x4+5x45x4+2x27x+35x42x2+7x3\dfrac{{3{x^4} + 3{x^4} - 3{x^4} + {x^2} - 2x - 3}}{{3{x^4} - {x^2} + 2x + 3}} = \dfrac{{5{x^4} + 5{x^4} - 5{x^4} + 2{x^2} - 7x + 3}}{{5{x^4} - 2{x^2} + 7x - 3}}
3x4+3x43x4x2+2x+33x4x2+2x+33x4x2+2x+3=5x4+5x45x42x2+7x35x42x2+7x35x42x2+7x3\Rightarrow \dfrac{{3{x^4} + 3{x^4}}}{{3{x^4} - {x^2} + 2x + 3}} - \dfrac{{3{x^4} - {x^2} + 2x + 3}}{{3{x^4} - {x^2} + 2x + 3}} = \dfrac{{5{x^4} + 5{x^4}}}{{5{x^4} - 2{x^2} + 7x - 3}} - \dfrac{{5{x^4} - 2{x^2} + 7x - 3}}{{5{x^4} - 2{x^2} + 7x - 3}}
6x43x4x2+2x+31=10x45x42x2+7x31\Rightarrow \dfrac{{6{x^4}}}{{3{x^4} - {x^2} + 2x + 3}} - 1 = \dfrac{{10{x^4}}}{{5{x^4} - 2{x^2} + 7x - 3}} - 1
6x43x4x2+2x+3=10x45x42x2+7x3\Rightarrow \dfrac{{6{x^4}}}{{3{x^4} - {x^2} + 2x + 3}} = \dfrac{{10{x^4}}}{{5{x^4} - 2{x^2} + 7x - 3}}
And we apply cross multiplication,
3×(5x42x2+7x3)=5×(3x4x2+2x+3)\Rightarrow 3 \times \left( {5{x^4} - 2{x^2} + 7x - 3} \right) = 5 \times \left( {3{x^4} - {x^2} + 2x + 3} \right)
15x46x2+21x9=15x45x2+10x+15 x211x+24=0 (x8)(x3)=0  \Rightarrow {\text{15}}{{\text{x}}^4} - 6{x^2} + 21x - 9 = 15{x^4} - 5{x^2} + 10x + 15 \\\ \Rightarrow {x^2} - 11x + 24 = 0 \\\ \Rightarrow \left( {x - 8} \right)\left( {x - 3} \right) = 0 \\\
x=8,x=3\therefore x = 8,x = 3

Note: Whenever we face such types of questions you have to simplify the equation as possible and rearrange equations to get the desired answer.