Solveeit Logo

Question

Question: Solve the following equation \[\cos x+\cos 3x-2\cos 2x=0\]...

Solve the following equation
cosx+cos3x2cos2x=0\cos x+\cos 3x-2\cos 2x=0

Explanation

Solution

Hint : Simplify the given equation by using this identity, cosA+cosB=2cos(A+B2)cos(AB2)\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right) where we take A as 3x and B as x. After that, we use the identity that if cosx=cosα\cos x=\cos \alpha then the value of x is 2nπ±α.2n\pi \pm \alpha .

Complete step-by-step answer :
In this question, we are given an equation which is cos x + cos 3x – 2 cos 2x = 0 and we have to find the values of x for which the given equation satisfies. So, the given equation is,
cosx+cos3x2cos2x=0\cos x+\cos 3x-2\cos 2x=0
Now, we will apply the following identity, which is,
cosA+cosB=2cos(A+B2)cos(AB2)\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)
Now, instead of values A and B, we will use 3x and x. So, we get,
cos3x+cosx=2cos(3x+x2)cos(3xx2)\Rightarrow \cos 3x+\cos x=2\cos \left( \dfrac{3x+x}{2} \right)\cos \left( \dfrac{3x-x}{2} \right)
cos3x+cosx=2cos2xcosx\Rightarrow \cos 3x+\cos x=2\cos 2x\cos x
So, we will apply this result in the following equation
cosx+cos3x2cos2x=0\cos x+\cos 3x-2\cos 2x=0
2cos2xcosx2cos2x=0\Rightarrow 2\cos 2x\cos x-2\cos 2x=0
Now, we will take 2 cos 2x common, we get,
\Rightarrow 2\cos 2x\left\\{ \cos x-1 \right\\}=0
So, the value of cos can either be 1 or cos 2x be 0 to find the value of x, we have to test the cases.
For cos x = 1, we can write it as, cos x = cos 0.
Now, we know that if, cosx=cosα,\cos x=\cos \alpha , then the value of x is 2nπ±α.2n\pi \pm \alpha . So, we can write the value of x if cos x = cos 0 as 2nπ±02n\pi \pm 0 or 2nπ2n\pi where n belongs to integers.
Now, for cos 2x = 0, we can write it as, cos2x=cosπ2\cos 2x=\cos \dfrac{\pi }{2}
Now, we know that if, cosx=cosα,\cos x=\cos \alpha , then the value of x is 2nπ±α.2n\pi \pm \alpha . So, we can write the value of 2x if cos2x=cosπ2\cos 2x=\cos \dfrac{\pi }{2} as 2nπ±π22n\pi \pm \dfrac{\pi }{2} or x is equal to nπ±π4n\pi \pm \dfrac{\pi }{4} where n is any integer.
Hence, the values of x are 2nπ or nπ±π42n\pi \text{ or }n\pi \pm \dfrac{\pi }{4} where n is any integer.

Note : We can also do by using the identities cos2x=2cos2x1\cos 2x=2{{\cos }^{2}}x-1 and cos3x=4cos3x3cosx\cos 3x=4{{\cos }^{3}}x-3\cos x and then substitute it to find the values of cos x. After this, we will apply the identity that if cosx=cosα\cos x=\cos \alpha then the value of x is 2nπ±α.2n\pi \pm \alpha .