Solveeit Logo

Question

Question: Solve the following equation: \[\cos x + \cos 3x - \cos 2x = 0\]...

Solve the following equation:
cosx+cos3xcos2x=0\cos x + \cos 3x - \cos 2x = 0

Explanation

Solution

We can solve the given equation by first solving the additional part of the question by interchanging their positions so that cosine with a smaller angle is added to the one with bigger angle rather than doing vice-versa. Then we will use the formula of cosA+cosB\cos A + \cos B and solve the equation by equating it with 0.Then we can reach the general solution by applying the respective formulas in the solution.

Formula Used:
We will use the formula ,cosA+cosB=2cos(A+B2)cos(AB2)\cos A + {\rm{ }}\cos B = {\rm{ }}2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right).

Complete step by step solution:
Here, we will apply a formula and solve the first part of the question, i.e. in the brackets, (cosx+cos3x)cos2x=0\left( {\cos x + \cos 3x} \right) - \cos 2x = 0
Now, we will interchange the positions of cosx\cos x and cos3x\cos 3x.
(cos3x+cosx)cos2x=0\left( {\cos 3x + \cos x} \right) - \cos 2x = 0
Now, we know the formula, cosA+cosB=2cos(A+B2)cos(AB2)\cos A + {\rm{ }}\cos B = {\rm{ }}2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)
Here, A=3xA = 3x and B=xB = x
Applying the formula in the first part of the question, we get,
2cos(3x+x2)cos(3xx2)cos2x=02\cos \left( {\dfrac{{3x + x}}{2}} \right)\cos \left( {\dfrac{{3x - x}}{2}} \right) - \cos 2x{\rm{ }} = {\rm{ }}0
2cos(4x2)cos(2x2)cos2x=0\Rightarrow 2\cos \left( {\dfrac{{4x}}{2}} \right)\cos \left( {\dfrac{{2x}}{2}} \right) - \cos 2x = {\rm{ }}0
Dividing the terms in the bracket, we get
2cos(2x)cos(x)cos2x=0\Rightarrow 2\cos \left( {2x} \right)\cos \left( x \right) - \cos 2x = {\rm{ }}0
Taking cos2x\cos 2x common, we get,
cos2x(2cosx1)=0\cos 2x\left( {2\cos x - 1} \right) = {\rm{ }}0
cos2x=0\Rightarrow \cos 2x = {\rm{ }}0
Or
2cosx1=0\Rightarrow 2\cos x - 1 = {\rm{ }}0
(We know that the general solution of cosθ=0\cos \theta {\rm{ }} = {\rm{ }}0is
θ=(2n+1)π2\theta = \left( {2n + 1} \right)\dfrac{\pi }{2} , Where, nZ{\rm{n}} \in {\rm{Z}}
Now, general solution for cos2x=0\cos 2x = 0 will be,
2x=(2n+1)π22x = \left( {2n + 1} \right)\dfrac{\pi }{2}
x=(2n+1)π4\Rightarrow x = \left( {2n + 1} \right)\dfrac{\pi }{4} Where, nZ{\rm{n}} \in {\rm{Z}}
Now solving, 2cosx1=02\cos x - 1 = 0
cosx=12\Rightarrow \cos x = \dfrac{1}{2}
As, cos60=cosπ3=12\cos 60^\circ = {\rm{cos}}\dfrac{{\rm{\pi }}}{{\rm{3}}}{\rm{ = }}\dfrac{{\rm{1}}}{{\rm{2}}}
cosx=cosπ3\Rightarrow \cos x = \cos \dfrac{\pi }{3}
(Now, general solution of cosθ=cosα\cos \theta = \cos \alpha is
θ=2nπ±α\theta = 2n\pi \pm \alpha , wherenZ{\rm{n}} \in {\rm{Z}})
Hence, general solution of cosx=cosπ3\cos x = \cos \dfrac{\pi }{3} will be,
x=2nπ±π3x = 2n\pi \pm \dfrac{\pi }{3}, where, nZ{\rm{n}} \in {\rm{Z}}
Hence, the general solutions are:

For cos2x=0\cos 2x = 0,x=(2n+1)π4x = \left( {2n + 1} \right)\dfrac{\pi }{4}, where nZ{\rm{n}} \in {\rm{Z}}
And for, cosx=12\cos x = \dfrac{1}{2}, x=2nπ±π3x = 2n\pi \pm \dfrac{\pi }{3} , where nZ{\rm{n}} \in {\rm{Z}}

Note:
The reason why we should interchange the positions of cosx\cos x and cos3x\cos 3x is because when we will further apply the formula then, cos(x3x2)\cos \left( {\dfrac{{x - 3x}}{2}} \right)will get a negative answer and then we would have to apply quadrants. Hence, to solve this question easily, the best way is to interchange the positions in the beginning itself.