Solveeit Logo

Question

Question: Solve the following equation and find the values of m: \(\left( 2{{m}^{3}}+3m \right)\left( 5m-1 \...

Solve the following equation and find the values of m:
(2m3+3m)(5m1)=0.\left( 2{{m}^{3}}+3m \right)\left( 5m-1 \right)=0.

Explanation

Solution

Hint: To solve the question given above, first we will find the total number of values of m we will get. The total number of values of m will be equal to greater power of m in the equation. Then, we will find all the values of m by factoring the above equation and then equating each factor term to zero.

Complete step-by-step answer:
Before we find the values of m or roots of the equation given above, we will first find out how many roots we will get. The total number of roots will be equal to the highest power of m in the equation (2m3+3m)(5m1)=0.\left( 2{{m}^{3}}+3m \right)\left( 5m-1 \right)=0. For this, we will multiply both the terms on the left hand side. Thus we will get:
(2m3+3m)(5m1)=0 2m3(5m1)+3m(5m1)=0 10m42m3+15m23m=0.........(1) \begin{aligned} & \left( 2{{m}^{3}}+3m \right)\left( 5m-1 \right)=0 \\\ & \Rightarrow 2{{m}^{3}}\left( 5m-1 \right)+3m\left( 5m-1 \right)=0 \\\ & \Rightarrow 10{{m}^{4}}-2{{m}^{3}}+15{{m}^{2}}-3m=0.........\left( 1 \right) \\\ \end{aligned}
Here, we can see that the greater power of m is 4 so we will get roots m1,m2,m3 and m4.{{m}_{1}},{{m}_{2}},{{m}_{3}}\text{ }and\text{ }{{m}_{4.}} Now, the equation given in question is:
(2m3+3m)(5m1)=0.\left( 2{{m}^{3}}+3m \right)\left( 5m-1 \right)=0.
Now, we will take m common from the term (2m3+3m).\left( 2{{m}^{3}}+3m \right).Thus we will get: (m)(2m2+3)(5m1)=0.\left( m \right)\left( 2{{m}^{2}}+3 \right)\left( 5m-1 \right)=0.
In the above equation, we have the term (2m3+3m)\left( 2{{m}^{3}}+3m \right) which do not have real factors. The imaginary factors of equation a2x2+b2{{a}^{2}}{{x}^{2}}+{{b}^{2}} are (x+i6a)(xi6a).\left( x+\dfrac{i6}{a} \right)\left( x-\dfrac{i6}{a} \right). So, after applying these form, we will get: m(m+i32)(mi32)(5m1)=0m\left( m+\dfrac{i\sqrt{3}}{\sqrt{2}} \right)\left( m-\dfrac{i\sqrt{3}}{\sqrt{2}} \right)\left( 5m-1 \right)=0
Now, to find the values of m, we will equate each factor to zero separately. Thus m1{{m}_{1}} can be obtained as follows: m=0 m1=0 \begin{aligned} & m=0 \\\ & \Rightarrow {{m}_{1}}=0 \\\ \end{aligned}
Now, to find the value of m2{{m}_{2}}, we will equate the form (m+i32)\left( m+\dfrac{i\sqrt{3}}{\sqrt{2}} \right) to zero. Thus, we get: m+i32=0 m=i32 m=32i \begin{aligned} & m+\dfrac{i\sqrt{3}}{\sqrt{2}}=0 \\\ & m=-i\sqrt{\dfrac{3}{2}} \\\ & \Rightarrow m=-\sqrt{\dfrac{3}{2}}i \\\ \end{aligned}
To find the value of m3{{m}_{3}}, we will equate the term (mi32)\left( m-\dfrac{i\sqrt{3}}{\sqrt{2}} \right) to zero. Thus, we get:
m+i32=0 m=i32 m3=32i \begin{aligned} & m+\dfrac{i\sqrt{3}}{\sqrt{2}}=0 \\\ & \Rightarrow m=i\sqrt{\dfrac{3}{2}} \\\ & \Rightarrow {{m}_{3}}=\sqrt{\dfrac{3}{2}i} \\\ \end{aligned}
To find m4{{m}_{4}}, we will do:
5m1=0 m=15m4=15 \begin{aligned} & 5m-1=0 \\\ & m=\dfrac{1}{5}\Rightarrow {{m}_{4}}=\dfrac{1}{5} \\\ \end{aligned}
Thus the roots of equation (2m3+3m)(5m1)=0.\left( 2{{m}^{3}}+3m \right)\left( 5m-1 \right)=0. are
m1=0 m2=32i m3=32i m4=15 \begin{aligned} & {{m}_{1}}=0 \\\ & {{m}_{2}}=-\sqrt{\dfrac{3}{2}i} \\\ & {{m}_{3}}=\sqrt{\dfrac{3}{2}i} \\\ & {{m}_{4}}=\dfrac{1}{5} \\\ \end{aligned}

Note: The imaginary roots of the above equation can also be found out with the help of quadratic formula. The quadratic formula is as shown: x=b±b24ac2ax=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}
Where x is the root of ax2+bx+c=0.a{{x}^{2}}+bx+c=0. In our case, the factor which will give imaginary roots is(2m2+3).\left( 2{{m}^{2}}+3 \right). Thus a=2, b=0 and c=3.
m=(0)±(0)24(2)(3)2(2) m=±4(2)(3)2(2) m=±2(2)(3)2(2) m=±(2)(3)i(2) m=±(32)i m=32i and m=-32i. \begin{aligned} & \Rightarrow m=\dfrac{-\left( 0 \right)\pm \sqrt{{{\left( 0 \right)}^{2}}-4\left( 2 \right)\left( 3 \right)}}{2\left( 2 \right)} \\\ & \Rightarrow m=\dfrac{\pm \sqrt{-4\left( 2 \right)\left( 3 \right)}}{2\left( 2 \right)} \\\ & \Rightarrow m=\pm \dfrac{2\sqrt{-\left( 2 \right)\left( 3 \right)}}{2\left( 2 \right)} \\\ & \Rightarrow m=\pm \dfrac{\sqrt{\left( 2 \right)\left( 3 \right)i}}{\left( 2 \right)} \\\ & \Rightarrow m=\pm \left( \sqrt{\dfrac{3}{2}} \right)i \\\ & \Rightarrow m=\sqrt{\dfrac{3}{2}}i\text{ and m=-}\sqrt{\dfrac{3}{2}}i. \\\ \end{aligned}