Solveeit Logo

Question

Question: Solve the following equation : \({3^{{{\left( {{{\log }_9}x} \right)}^2} - \dfrac{9}{2}{{\log }_9}x ...

Solve the following equation : 3(log9x)292log9x+5=33{3^{{{\left( {{{\log }_9}x} \right)}^2} - \dfrac{9}{2}{{\log }_9}x + 5}} = 3\sqrt 3

Explanation

Solution

Hint: We are going to convert the given equation into a quadratic equation by comparing the powers on both sides and then by applying the basic properties of logarithm the values of x are computed.

Complete step-by-step answer:
Given 3(log9x)292log9x+5=33{3^{{{\left( {{{\log }_9}x} \right)}^2} - \dfrac{9}{2}{{\log }_9}x + 5}} = 3\sqrt 3
Comparing the powers on both sides of the given equation, we get
(log9x)2log9x+5=32{\left( {{{\log }_9}x} \right)^2} - {\log _9}x + 5 = \dfrac{3}{2}
Let (log9x)=y\left( {{{\log }_9}x} \right) = y
y292y+5=32\therefore {y^2} - \dfrac{9}{2}y + 5 = \dfrac{3}{2}
2y29y+103=0\Rightarrow 2{y^2} - 9y + 10 - 3 = 0
2y29y+7=0\Rightarrow 2{y^2} - 9y + 7 = 0
2y27y2y+7=0\Rightarrow 2{y^2} - 7y - 2y + 7 = 0
y(2y7)(2y7)=0\Rightarrow y(2y - 7) - (2y - 7) = 0
(y1)(2y7)=0\Rightarrow (y - 1)(2y - 7) = 0
y=1,72\therefore y = 1,\dfrac{7}{2}
When y=1y = 1
log9x=1\therefore {\log _9}x = 1
x=9 [logbx=yx=by]\Rightarrow x = 9{\text{ }}[\because {\log _b}x = y \Leftrightarrow x = {b^y}]
When y=72y = \dfrac{7}{2}
log9x=72\therefore {\log _9}x = \dfrac{7}{2}
x=(9)72 [logbx=yx=by] x=(32)72 x=(3)7  \Rightarrow x = {\left( 9 \right)^{\dfrac{7}{2}}}{\text{ }}[\because {\log _b}x = y \Leftrightarrow x = {b^y}] \\\ \Rightarrow x = {\left( {{3^2}} \right)^{\dfrac{7}{2}}} \\\ \Rightarrow x = {(3)^7} \\\
x=9,(3)7\therefore x = 9,{(3)^7}

Note: To solve the given problems on logarithms. The basic properties and formulae should be known. Here, we used the basic property of logarithm logbx=yx=by{\log _b}x = y \Leftrightarrow x = {b^y} i.e.., conversion of a logarithm form into exponential form.