Solveeit Logo

Question

Question: Solve the following differential equation \(({\tan ^{ - 1}}y - x)dy = (1 + y)dx\)...

Solve the following differential equation (tan1yx)dy=(1+y)dx({\tan ^{ - 1}}y - x)dy = (1 + y)dx

Explanation

Solution

Differential equation is an equation that relates one or more functions and their derivatives. And an integrating factor is a function that is chosen to facilitate the solving of a given equation. The general for of differential equation is
dxdy+P(y)x=Q(y)\dfrac{{dx}}{{dy}} + P(y)x = Q(y)
I.F=eP(y)dyI.F = \,{e^{\int {P(y)dy} }}

Stepwise solution
Given:
(tan1yx)dy=(1+y2)dx({\tan ^{ - 1}}y - x)dy = (1 + {y^2})dx
Stepwise solution:
(1+y2)dx=(tan1yx)dy(1 + {y^2})dx\, = ({\tan ^{ - 1}}y - x)dy
dxdy=tan1y1+y2=x1+y2\Rightarrow \dfrac{{dx}}{{dy}} = \dfrac{{{{\tan }^{ - 1}}y}}{{1 + {y^2}}} = \dfrac{x}{{1 + {y^2}}}
dxdy+x1+y2=tan1y1+y2\Rightarrow \dfrac{{dx}}{{dy}} + \dfrac{x}{{1 + {y^2}}} = \dfrac{{{{\tan }^{ - 1}}y}}{{1 + {y^2}}}
Hence,
I.F=eP(y)dyI.F = \,{e^{\int {P(y)dy} }}
=e11+y2dy= {e^{\int {\dfrac{1}{{1 + {y^2}}}dy} }}
I.F=etan1yI.\,F = {e^{{{\tan }^{ - 1}}y}}
Hence, the above differential equation changes to
etan1ydydx+xetan1y1+y2=etan1ytan1y1+y2{e^{{{\tan }^{ - 1}}y}}\dfrac{{dy}}{{dx}} + \,\dfrac{{x{e^{{{\tan }^{ - 1}}y}}}}{{1 + {y^2}}} = \dfrac{{{e^{{{\tan }^{ - 1}}y}}\,{{\tan }^{ - 1}}y}}{{1 + {y^2}}}
etan1ydx+xetan1y1+y2dy=etan1ytan1y1+y2dy\Rightarrow \,{e^{{{\tan }^{ - 1}}y}}\,dx\, + \,\dfrac{{x{e^{{{\tan }^{ - 1}}y}}}}{{1 + {y^2}}}dy = \dfrac{{{e^{{{\tan }^{ - 1}}y}}\,{{\tan }^{ - 1}}y}}{{1 + {y^2}}}dy
d(etan1y.x)=d(etan1y)\Rightarrow \,d({e^{{{\tan }^{ - 1}}y}}.\,x) = d({e^{{{\tan }^{ - 1}}y}})
Integration of both the sides will result as
d(etan1yx)=d(etan1y)\Rightarrow \,\int {d({e^{{{\tan }^{ - 1}}y}}\,x)} = \int {d({e^{{{\tan }^{ - 1}}y}})}
etan1yx=etan1y+c\Rightarrow {e^{{{\tan }^{ - 1}}y\,}}x = e{\,^{{{\tan }^{ - 1}}y}} + c
xetan1yetan1y+c\Rightarrow \,x{e^{{{\tan }^{ - 1}}y}} - \,{e^{{{\tan }^{ - 1}}y}} + c

Note:
The student must not forget to integrate and always remember to follow the general solution of differential equations.