Solveeit Logo

Question

Question: Solve the following: \( \dfrac{d}{{dx}}[{\tan ^{ - 1}}\dfrac{{(a - x)}}{{(1 + ax)}}] = \) ? \(...

Solve the following:
ddx[tan1(ax)(1+ax)]=\dfrac{d}{{dx}}[{\tan ^{ - 1}}\dfrac{{(a - x)}}{{(1 + ax)}}] = ?
A)11+x2A)\dfrac{1}{{1 + x{}^2}}
B)11+x2B)\dfrac{{ - 1}}{{1 + x{}^2}}
C)a1+x2C)\dfrac{a}{{1 + x{}^2}}
D)D) None of these

Explanation

Solution

First, we need to analyze the given information which is in the trigonometric form.
Here we are asked to calculate the differentiation of tan1(ax)(1+ax){\tan ^{ - 1}}\dfrac{{(a - x)}}{{(1 + ax)}} , so we need to know the formulas in tan\tan (tangent) also.
In differentiation, the derivative of xx raised to the power is denoted by ddx(xn)=nxn1\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}} .
Formula used:
tan(A+B)=tanA+tanB1tanAtanB\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}} and tan(AB)=tanAtanB1+tanAtanB\tan (A - B) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}
ddx(tan1x)=11+x2\dfrac{d}{{dx}}({\tan ^{ - 1}}x) = \dfrac{1}{{1 + {x^2}}}
tan1(tan)=1{\tan ^{ - 1}}(\tan ) = 1 (Which is the inverse function of original function gets one)

Complete step by step answer:
Since from the given that, we have ddx[tan1(ax)(1+ax)]\dfrac{d}{{dx}}[{\tan ^{ - 1}}\dfrac{{(a - x)}}{{(1 + ax)}}]
Let us take the function tangent into the form of y=[tan1(ax)(1+ax)]y = [{\tan ^{ - 1}}\dfrac{{(a - x)}}{{(1 + ax)}}]
Now assume a=tanα,x=tanθa = \tan \alpha ,x = \tan \theta then substitute the values into the above equation we get, y=[tan1(ax)(1+ax)][tan1(tanαtanθ)(1+tanα.tanθ)]y = [{\tan ^{ - 1}}\dfrac{{(a - x)}}{{(1 + ax)}}] \Rightarrow [{\tan ^{ - 1}}\dfrac{{(\tan \alpha - \tan \theta )}}{{(1 + \tan \alpha .\tan \theta )}}]
Now from the tangent formula, we know that, tan(AB)=tanAtanB1+tanAtanB\tan (A - B) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}} and substituting this in the above equation we get,
y=[tan1(tanαtanθ)(1+tanα.tanθ)]tan1[tan(αθ)]y = [{\tan ^{ - 1}}\dfrac{{(\tan \alpha - \tan \theta )}}{{(1 + \tan \alpha .\tan \theta )}}] \Rightarrow {\tan ^{ - 1}}[\tan (\alpha - \theta )] where tan(αθ)=tanαtanθ1+tanαtanθ\tan (\alpha - \theta ) = \dfrac{{\tan \alpha - \tan \theta }}{{1 + \tan \alpha \tan \theta }}
Again, from the given formula we know that, tan1(tan)=1{\tan ^{ - 1}}(\tan ) = 1
Substituting these value into the above equation we get, y=tan1[tan(αθ)](αθ)y = {\tan ^{ - 1}}[\tan (\alpha - \theta )] \Rightarrow (\alpha - \theta )
So, we converted the original given form of a tangent as y=(αθ)y = (\alpha - \theta )
But since in the beginning, we assumed that a=tanα,x=tanθa = \tan \alpha ,x = \tan \theta and this can be rewritten as a=tanα,x=tanθα=tan1a,θ=tan1xa = \tan \alpha ,x = \tan \theta \Rightarrow \alpha = {\tan ^{ - 1}}a,\theta = {\tan ^{ - 1}}x (where these functions are the inverse image to the given functions)
Now substitute the converted values α=tan1a,θ=tan1x\alpha = {\tan ^{ - 1}}a,\theta = {\tan ^{ - 1}}x in the above values y=(αθ)y = (\alpha - \theta ) then we get, y=(αθ)tan1atan1xy = (\alpha - \theta ) \Rightarrow {\tan ^{ - 1}}a - {\tan ^{ - 1}}x
Finally, we will take the differentiation with respect to x (which is the requirement)
Thus, we get, d(y)dx=ddx(tan1atan1x)\dfrac{{d(y)}}{{dx}} = \dfrac{d}{{dx}}({\tan ^{ - 1}}a - {\tan ^{ - 1}}x)
Now giving the derivative inside the tangent function we get, dydx=ddxtan1addxtan1x\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}{\tan ^{ - 1}}a - \dfrac{d}{{dx}}{\tan ^{ - 1}}x
Since we know that from the formula of a tangent, ddx(tan1x)=11+x2\dfrac{d}{{dx}}({\tan ^{ - 1}}x) = \dfrac{1}{{1 + {x^2}}} (with respect to x) and ddxtan1a=0\dfrac{d}{{dx}}{\tan ^{ - 1}}a = 0 (because this is a constant function, the function is in with constant value aa so if we differentiate the constant, we only get zero)
Hence substitute both values of ddx(tan1x)=11+x2\dfrac{d}{{dx}}({\tan ^{ - 1}}x) = \dfrac{1}{{1 + {x^2}}} and ddxtan1a=0\dfrac{d}{{dx}}{\tan ^{ - 1}}a = 0 in dydx=ddxtan1addxtan1x\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}{\tan ^{ - 1}}a - \dfrac{d}{{dx}}{\tan ^{ - 1}}x .
Thus, we get, dydx=ddxtan1addxtan1x011+x2\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}{\tan ^{ - 1}}a - \dfrac{d}{{dx}}{\tan ^{ - 1}}x \Rightarrow 0 - \dfrac{1}{{1 + {x^2}}}
Therefore, finally, we get dydx=011+x211+x2\dfrac{{dy}}{{dx}} = 0 - \dfrac{1}{{1 + {x^2}}} \Rightarrow - \dfrac{1}{{1 + {x^2}}}

So, the correct answer is “Option B”.

Note:
Since if we substitute the wrong formula for the tangent, that is tan(A+B)=tanA+tanB1tanAtanB\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}} then there is the possibility to get the option as A)11+x2A)\dfrac{1}{{1 + x{}^2}} but which is the completely wrong answer. So be careful at the tangent formula which is in the solution we only required y=tan1(tanαtanθ)(1+tanα.tanθ)y = {\tan ^{ - 1}}\dfrac{{(\tan \alpha - \tan \theta )}}{{(1 + \tan \alpha .\tan \theta )}} and in the numerator, it is a negative sign so we need to apply the formula as tan(AB)=tanAtanB1+tanAtanB\tan (A - B) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}