Question
Question: Solve the following: \[\dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}} = \cos ecA + \cot A\]....
Solve the following: cosA+sinA−1cosA−sinA+1=cosecA+cotA.
Solution
In the given question , we will solve the expression on the LHS and prove it equal to the RHS expression . The expression in LHS contains cos and sin , so we will convert them to cosec and cot by dividing the numerator and denominator by sinA . Also we will be using a basic trigonometric identity i.e. cosec2A=1+cot2A.
Complete step by step answer:
Given : cosA+sinA−1cosA−sinA+1
Now on dividing the numerator and denominator by sinA we get ,
LHS=sinAcosA+sinAsinA−sinA1sinAcosA−sinAsinA+sinA1
On solving the above expression as sinA1=cosecA we get ,
LHS=cotA+1−cosecAcotA−1+cosecA
Now in numerator we will use the trigonometric identity cosec2A=1+cot2A , we get
LHS=cotA+1−cosecAcotA+cosecA−(cosec2A−cot2A)
Now using the identity of a2−b2=(a+b)(a−b) , we get
LHS=cotA+1−cosecAcotA+cosecA−[(cosecA−cotA)(cosecA+cotA)]
Now taking (cosecA+cotA) common in numerator , we get
LHS=cotA+1−cosecA(cotA+cosecA)[1−(cosecA+cotA)]
On rearranging the terms in numerator we get ,
LHS=cotA+1−cosecA(cotA+cosecA)[cotA+1−cosecA]
Now cancelling out the term cotA+1−cosecA from numerator and denominator , we get
LHS=(cotA+cosecA)
Hence Proved. Therefore , the LHS=RHS .
Note: Alternate Method :
LHS=cosA+sinA−1cosA−sinA+1
Now multiplying the numerator and denominator by sinA we get ,
LHS=sinA(cosA+sinA−1)sinA(cosA−sinA+1)
On solving we get ,
LHS=sinA(cosA+sinA−1)sinAcosA−sin2A+sinA
Now using the basic trigonometric identity sin2A+cos2A=1 in numerator we get ,
LHS=sinA(cosA+sinA−1)sinAcosA+sinA−(1−cos2A)
Now using the identity of a2−b2=(a+b)(a−b) , we get
LHS=sinA(cosA+sinA−1)sinAcosA+sinA−[(1−cosA)(1+cosA)]
Now taking sinA common in numerator we get ,
LHS=sinA(cosA+sinA−1)sinA(cosA+1)−[(1−cosA)(1+cosA)]
Now taking (cosA+1) common from the numerator we get ,
LHS=sinA(cosA+sinA−1)(cosA+1)[sinA−(1−cosA)]
On rearranging the terms in numerator we get ,
LHS=sinA(cosA+sinA−1)(cosA+1)(cosA+sinA−1)
Now cancelling out the term (cosA+sinA−1) from numerator and denominator we get ,
LHS=sinA(cosA+1)
On simplifying we get ,
LHS=sinAcosA+sinA1
On solving as sinA1=cosecA we get ,
LHS=cotA+cosecA
Hence Proved.