Solveeit Logo

Question

Question: Solve the following: \[\dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}} = \cos ecA + \cot A\]....

Solve the following: cosAsinA+1cosA+sinA1=cosecA+cotA\dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}} = \cos ecA + \cot A.

Explanation

Solution

In the given question , we will solve the expression on the LHS and prove it equal to the RHS expression . The expression in LHS contains cos\cos and sin\sin , so we will convert them to cosec\cos ec and cot\cot by dividing the numerator and denominator by sinA\sin A . Also we will be using a basic trigonometric identity i.e. cosec2A=1+cot2A\cos e{c^2}A = 1 + {\cot ^2}A.

Complete step by step answer:
Given : cosAsinA+1cosA+sinA1\dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}}
Now on dividing the numerator and denominator by sinA\sin A we get ,
LHS=cosAsinAsinAsinA+1sinAcosAsinA+sinAsinA1sinALHS = \dfrac{{\dfrac{{\cos A}}{{\sin A}} - \dfrac{{\sin A}}{{\sin A}} + \dfrac{1}{{\sin A}}}}{{\dfrac{{\cos A}}{{\sin A}} + \dfrac{{\sin A}}{{\sin A}} - \dfrac{1}{{\sin A}}}}
On solving the above expression as 1sinA=cosecA\dfrac{1}{{\sin A}} = \cos ecA we get ,
LHS=cotA1+cosecAcotA+1cosecALHS = \dfrac{{\cot A - 1 + \cos ecA}}{{\cot A + 1 - \cos ecA}}
Now in numerator we will use the trigonometric identity cosec2A=1+cot2A\cos e{c^2}A = 1 + {\cot ^2}A , we get
LHS=cotA+cosecA(cosec2Acot2A)cotA+1cosecALHS = \dfrac{{\cot A + \cos ecA - \left( {\cos e{c^2}A - {{\cot }^2}A} \right)}}{{\cot A + 1 - \cos ecA}}
Now using the identity of a2b2=(a+b)(ab){a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right) , we get
LHS=cotA+cosecA[(cosecAcotA)(cosecA+cotA)]cotA+1cosecALHS= \dfrac{{\cot A + \cos ecA - \left[ {\left( {\cos ecA - \cot A} \right)\left( {\cos ecA + \cot A} \right)} \right]}}{{\cot A + 1 - \cos ecA}}

Now taking (cosecA+cotA)\left( {\cos ecA + \cot A} \right) common in numerator , we get
LHS=(cotA+cosecA)[1(cosecA+cotA)]cotA+1cosecALHS = \dfrac{{\left( {\cot A + \cos ecA} \right)\left[ {1 - \left( {\cos ecA + \cot A} \right)} \right]}}{{\cot A + 1 - \cos ecA}}
On rearranging the terms in numerator we get ,
LHS=(cotA+cosecA)[cotA+1cosecA]cotA+1cosecALHS= \dfrac{{\left( {\cot A + \cos ecA} \right)\left[ {\cot A + 1 - \cos ecA} \right]}}{{\cot A + 1 - \cos ecA}}
Now cancelling out the term cotA+1cosecA\cot A + 1 - \cos ecA from numerator and denominator , we get
LHS=(cotA+cosecA)LHS = \left( {\cot A + \cos ecA} \right)
Hence Proved. Therefore , the LHS=RHSLHS = RHS .

Note: Alternate Method :
LHS=cosAsinA+1cosA+sinA1LHS = \dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}}
Now multiplying the numerator and denominator by sinA\sin A we get ,
LHS=sinA(cosAsinA+1)sinA(cosA+sinA1)LHS = \dfrac{{\sin A\left( {\cos A - \sin A + 1} \right)}}{{\sin A\left( {\cos A + \sin A - 1} \right)}}
On solving we get ,
LHS=sinAcosAsin2A+sinAsinA(cosA+sinA1)LHS = \dfrac{{\sin A\cos A - {{\sin }^2}A + \sin A}}{{\sin A\left( {\cos A + \sin A - 1} \right)}}
Now using the basic trigonometric identity sin2A+cos2A=1{\sin ^2}A + {\cos ^2}A = 1 in numerator we get ,
LHS=sinAcosA+sinA(1cos2A)sinA(cosA+sinA1)LHS= \dfrac{{\sin A\cos A + \sin A - \left( {1 - {{\cos }^2}A} \right)}}{{\sin A\left( {\cos A + \sin A - 1} \right)}}
Now using the identity of a2b2=(a+b)(ab){a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right) , we get
LHS=sinAcosA+sinA[(1cosA)(1+cosA)]sinA(cosA+sinA1)LHS = \dfrac{{\sin A\cos A + \sin A - \left[ {\left( {1 - \cos A} \right)\left( {1 + \cos A} \right)} \right]}}{{\sin A\left( {\cos A + \sin A - 1} \right)}}
Now taking sinA\sin A common in numerator we get ,
LHS=sinA(cosA+1)[(1cosA)(1+cosA)]sinA(cosA+sinA1)LHS= \dfrac{{\sin A\left( {\cos A + 1} \right) - \left[ {\left( {1 - \cos A} \right)\left( {1 + \cos A} \right)} \right]}}{{\sin A\left( {\cos A + \sin A - 1} \right)}}

Now taking (cosA+1)\left( {\cos A + 1} \right) common from the numerator we get ,
LHS=(cosA+1)[sinA(1cosA)]sinA(cosA+sinA1)LHS= \dfrac{{\left( {\cos A + 1} \right)\left[ {\sin A - \left( {1 - \cos A} \right)} \right]}}{{\sin A\left( {\cos A + \sin A - 1} \right)}}
On rearranging the terms in numerator we get ,
LHS=(cosA+1)(cosA+sinA1)sinA(cosA+sinA1)LHS = \dfrac{{\left( {\cos A + 1} \right)\left( {\cos A + \sin A - 1} \right)}}{{\sin A\left( {\cos A + \sin A - 1} \right)}}
Now cancelling out the term (cosA+sinA1)\left( {\cos A + \sin A - 1} \right) from numerator and denominator we get ,
LHS=(cosA+1)sinALHS = \dfrac{{\left( {\cos A + 1} \right)}}{{\sin A}}
On simplifying we get ,
LHS=cosAsinA+1sinALHS= \dfrac{{\cos A}}{{\sin A}} + \dfrac{1}{{\sin A}}
On solving as 1sinA=cosecA\dfrac{1}{{\sin A}} = \cos ecA we get ,
LHS=cotA+cosecALHS = \cot A + \cos ecA
Hence Proved.