Solveeit Logo

Question

Question: Solve the following complex expression \(\dfrac{{{\left( \cos \theta +i\sin \theta \right)}^{4}}}...

Solve the following complex expression
(cosθ+isinθ)4(sinθ+icosθ)5\dfrac{{{\left( \cos \theta +i\sin \theta \right)}^{4}}}{{{\left( \sin \theta +i\cos \theta \right)}^{5}}}
(a) cos9θisin9θ\cos 9\theta -i\sin 9\theta
(b) cos9θ+isin9θ\cos 9\theta +i\sin 9\theta
(c) sin9θicos9θ\sin 9\theta -i\cos 9\theta
(d) sin9θ+icos9θ\sin 9\theta +i\cos 9\theta

Explanation

Solution

Hint: Any complex number that can be represented in the form cosθ+isinθ\cos \theta +i\sin \theta can be also written as eiθ{{e}^{i\theta }}. This form of the complex number is also called the euler form of the complex number. Using this euler form, we can solve this question.

Complete step-by-step answer:

Before proceeding with the question, we must know the concept and the formula that will be required to solve this question.
Any complex number that can be written in the form of cosθ+isinθ\cos \theta +i\sin \theta can be also expressed in the euler form. From the euler form, we can write the complex number cosθ+isinθ=eiθ\cos \theta +i\sin \theta ={{e}^{i\theta }} . . . . . . . . (1)
Also, in the complex number, we have a formula i2=1{{i}^{2}}=-1 . . . . . . . . . (2).
In the question, we have to evaluate (cosθ+isinθ)4(sinθ+icosθ)5\dfrac{{{\left( \cos \theta +i\sin \theta \right)}^{4}}}{{{\left( \sin \theta +i\cos \theta \right)}^{5}}}.
(cosθ+isinθ)4(sinθ+icosθ)5\dfrac{{{\left( \cos \theta +i\sin \theta \right)}^{4}}}{{{\left( \sin \theta +i\cos \theta \right)}^{5}}}can be also written as,

& \dfrac{{{\left( \cos \theta +i\sin \theta \right)}^{4}}}{{{\left( i \right)}^{5}}{{\left( \dfrac{1}{i}\sin \theta +\cos \theta \right)}^{5}}} \\\ & \Rightarrow \dfrac{{{\left( \cos \theta +i\sin \theta \right)}^{4}}}{{{\left( i \right)}^{4}}\left( i \right){{\left( \dfrac{i}{{{i}^{2}}}\sin \theta +\cos \theta \right)}^{5}}} \\\ & \Rightarrow \dfrac{{{\left( \cos \theta +i\sin \theta \right)}^{4}}}{{{\left( {{i}^{2}} \right)}^{2}}\left( i \right){{\left( \dfrac{i}{{{i}^{2}}}\sin \theta +\cos \theta \right)}^{5}}} \\\ \end{aligned}$$ Using formula (2), we can write ${{i}^{2}}=-1$. So, we get, $$\begin{aligned} & \dfrac{{{\left( \cos \theta +i\sin \theta \right)}^{4}}}{{{\left( -1 \right)}^{2}}\left( i \right){{\left( -i\sin \theta +\cos \theta \right)}^{5}}} \\\ & \Rightarrow \dfrac{1}{i}\dfrac{{{\left( \cos \theta +i\sin \theta \right)}^{4}}}{{{\left( -i\sin \theta +\cos \theta \right)}^{5}}} \\\ & \Rightarrow \dfrac{i}{{{i}^{2}}}\dfrac{{{\left( \cos \theta +i\sin \theta \right)}^{4}}}{{{\left( -i\sin \theta +\cos \theta \right)}^{5}}} \\\ & \Rightarrow -i\dfrac{{{\left( \cos \theta +i\sin \theta \right)}^{4}}}{{{\left( \cos \theta -i\sin \theta \right)}^{5}}} \\\ \end{aligned}$$ From (1), we can write $\cos \theta +i\sin \theta ={{e}^{i\theta }}$ and $\cos \theta -i\sin \theta ={{e}^{-i\theta }}$. So, we get, $$\begin{aligned} & -i\dfrac{{{\left( {{e}^{i\theta }} \right)}^{4}}}{{{\left( {{e}^{-i\theta }} \right)}^{5}}} \\\ & \Rightarrow -i\dfrac{{{\left( {{e}^{i\theta }} \right)}^{4}}}{{{\left( {{e}^{i\theta }} \right)}^{-5}}} \\\ \end{aligned}$$ There is a rule of exponents from which we can say $\dfrac{{{a}^{b}}}{{{a}^{c}}}={{a}^{b-c}}$. Using this formula in the above expression, we get, $\begin{aligned} & -i{{\left( {{e}^{i\theta }} \right)}^{4-\left( -5 \right)}} \\\ & \Rightarrow -i{{\left( {{e}^{i\theta }} \right)}^{9}} \\\ & \Rightarrow -i\left( {{e}^{i9\theta }} \right) \\\ \end{aligned}$ Converting this euler form to the complex number in the form of $\cos \theta $ and $\sin \theta $, we can get, $$\begin{aligned} & -i\left( {{e}^{i9\theta }} \right)=-i\left( \cos 9\theta +i\sin 9\theta \right) \\\ & \Rightarrow -i\cos 9\theta -{{i}^{2}}\sin 9\theta \\\ & \Rightarrow -i\cos 9\theta -\left( -1 \right)\sin 9\theta \\\ & \Rightarrow \sin 9\theta -i\cos 9\theta \\\ \end{aligned}$$ Hence, the answer is option (c). Note: There is a possibility that one may commit a mistake while applying the formula $\dfrac{{{a}^{b}}}{{{a}^{c}}}={{a}^{b-c}}$ on the expression $$\dfrac{{{\left( {{e}^{i\theta }} \right)}^{4}}}{{{\left( {{e}^{i\theta }} \right)}^{-5}}}$$. It is possible that one may write the expression $$\dfrac{{{\left( {{e}^{i\theta }} \right)}^{4}}}{{{\left( {{e}^{i\theta }} \right)}^{-5}}}$$ as $${{\left( {{e}^{i\theta }} \right)}^{4-5}}$$ instead of $${{\left( {{e}^{i\theta }} \right)}^{4-\left( -5 \right)}}$$ which will lead us to an incorrect answer. So, one must be careful while applying such formulas specially on those terms which are having a negative exponent.