Solveeit Logo

Question

Question: Solve the following and find the value of \(\log \left( a+ib \right)=\left( \text{where}a>0,b>0 \...

Solve the following and find the value of
log(a+ib)=(wherea>0,b>0)\log \left( a+ib \right)=\left( \text{where}a>0,b>0 \right)
a) loga2+b2\log \sqrt{{{a}^{2}}+{{b}^{2}}}
b) 12log(a2+b2)+itan1(ba)\dfrac{1}{2}\log \left( {{a}^{2}}+{{b}^{2}} \right)+i{{\tan }^{-1}}\left( \dfrac{b}{a} \right)
c) 12log(a2+b2)itan1(ba)\dfrac{1}{2}\log \left( {{a}^{2}}+{{b}^{2}} \right)-i{{\tan }^{-1}}\left( \dfrac{b}{a} \right)
d) 12log(a2+b2)+itan1(ab)\dfrac{1}{2}\log \left( {{a}^{2}}+{{b}^{2}} \right)+i{{\tan }^{-1}}\left( \dfrac{a}{b} \right)

Explanation

Solution

Hint: To solve the question given above, we will convert the given complex number into polar form by putting the value of a as rcosθr\cos \theta and putting the value of b as rsinθr\sin \theta where r is the modulus of the given complex number. Then we will convert it into the form of reiθr{{e}^{i\theta }} . After that, we will take logarithms on both sides.

Complete step-by-step answer:
For solving the given question above, first we will find the value of a + ib in terms of polar form. For this we will put the value of a as rcosθr\cos \theta and we will put the value of b as rsinθr\sin \theta . Thus we will get the following
a=rcosθ..............(i) b=rsinθ.............(ii) \begin{aligned} & a=r\cos \theta ..............\left( i \right) \\\ & b=r\sin \theta .............(ii) \\\ \end{aligned}
Here r is the modulus of the above complex number. The modulus of any complex number z= x + iy is represented by z\left| z \right| and it is given by the formula
z=x2+y2\left| z \right|=\sqrt{{{x}^{2}}+{{y}^{2}}}
Thus the value of r=a2+b2................(iii)r=\sqrt{{{a}^{2}}+{{b}^{2}}}................(iii)
Now we will multiply the equation (ii) with ‘i’ and then we will add it into equation (i). Thus we get:
a+ib=rcosθ+i(rsinθ)..............(iv)a+ib=r\cos \theta +i\left( r\sin \theta \right)..............\left( iv \right)
Now we will convert the polar form of the complex number into Euler’s form. According to Euler’s form we have
AcosB+i(AsinB)=AeiBA\cos B+i\left( A\sin B \right)=A{{e}^{iB}}
Using this Euler’s form, we can rewrite equation (iv) as
a+ib=reiθa+ib=r{{e}^{i\theta }}
Now we will take a logarithm with base ‘e’ on both sides. Thus we will get
loge(a+ib)=loge(reiθ){{\log }_{e}}\left( a+ib \right)={{\log }_{e}}\left( r{{e}^{i\theta }} \right)
Now, we will use a logarithm identity here
log(a×b)=loga+logb\log \left( a\times b \right)=\log a+\operatorname{logb}
Thus we will get
loge(a+ib)=loger+logeeiθ{{\log }_{e}}\left( a+ib \right)={{\log }_{e}}r+{{\log }_{e}}{{e}^{i\theta }}
Now, we will use another logarithmic identity which is as shown below
logab=bloga\log {{a}^{b}}=b\log a
Thus we will get
\begin{aligned} & {{\log }_{e}}\left( a+ib \right)={{\log }_{e}}r+i\theta {{\log }_{e}}e \\\ & \Rightarrow {{\log }_{e}}\left( a+ib \right)={{\log }_{e}}r+i\theta \left( 1 \right)\left\\{ {{\log }_{a}}a=1 \right\\} \\\ & \Rightarrow {{\log }_{e}}\left( a+ib \right)={{\log }_{e}}r+i\theta ..................(v) \\\ \end{aligned}
Now it is given in question that a > 0 and b > 0 so, we have

Thus
tanθ=ba θ=tan1(ba)...............(vi) \begin{aligned} & \tan \theta =\dfrac{b}{a} \\\ & \therefore \theta ={{\tan }^{-1}}\left( \dfrac{b}{a} \right)...............\left( vi \right) \\\ \end{aligned}
Now, we will substitute the value of θ\theta from (vi) and ‘r’ from (iii) into equation (v). Thus, we will get
loge(a+ib)=logea2+b2+itan1(ba)\Rightarrow {{\log }_{e}}\left( a+ib \right)={{\log }_{e}}\sqrt{{{a}^{2}}+{{b}^{2}}}+i{{\tan }^{-1}}\left( \dfrac{b}{a} \right)
Now, we will use another identity:
logx=12logx\log \sqrt{x}=\dfrac{1}{2}\log x
Thus we will get
loge(a+ib)=12log(a2+b2)+itan1(ba){{\log }_{e}}\left( a+ib \right)=\dfrac{1}{2}\log \left( {{a}^{2}}+{{b}^{2}} \right)+i{{\tan }^{-1}}\left( \dfrac{b}{a} \right)
Hence, option (b) is correct.

Note: Here, while using the identity given below we have assumed that in
logx=12logx\log \sqrt{x}=\dfrac{1}{2}\log x
x > 0. For this a2+b2>0{{a}^{2}}+{{b}^{2}}>0 . Thus a and b both should be real numbers. Also while the identity logaa{{\log }_{a}}a , a should be greater than zero and it should not be equal to 1.