Solveeit Logo

Question

Question: Solve the equation \[{{\text{x}}^6}{\text{ - 18}}{{\text{x}}^4}{\text{ + 16}}{{\text{x}}^3}{\text{ +...

Solve the equation x6 - 18x4 + 16x3 + 28x2 - 32x + 8 = 0{{\text{x}}^6}{\text{ - 18}}{{\text{x}}^4}{\text{ + 16}}{{\text{x}}^3}{\text{ + 28}}{{\text{x}}^2}{\text{ - 32x + 8 = 0}} , whose one of roots is 6 - 2\sqrt 6 {\text{ - 2}}.

Explanation

Solution

- Hint: As the given root is irrational, it occurs in pairs. Therefore, another root is 6 - 2 - \sqrt 6 {\text{ - 2}}. We will make a function with these two roots and solve the given problem.

Complete step-by-step solution -

Now, given roots are 6 - 2\sqrt 6 {\text{ - 2}} and 6 - 2 - \sqrt 6 {\text{ - 2}}. So, we can make a function.
Therefore, function is h (x) = (x + 2 + 6)(x + 2 - 6){\text{(x + 2 + }}\sqrt 6 ){\text{(x + 2 - }}\sqrt 6 )
h (x) = x2 + 4x - 2{{\text{x}}^2}{\text{ + 4x - 2}}
Now, to find other roots, we have to divide f (x) = x6 - 18x4 + 16x3 + 28x2 - 32x + 8{{\text{x}}^6}{\text{ - 18}}{{\text{x}}^4}{\text{ + 16}}{{\text{x}}^3}{\text{ + 28}}{{\text{x}}^2}{\text{ - 32x + 8}} by function h (x).
Now, by division theorem,
Dividend = divisor x quotient + remainder
As, the function h (x) is formed by the roots of f (x), so remainder = 0
f (x) = h(x). quotient
quotient = x6 - 18x4 + 16x3 + 28x2 - 32x + 8x2 + 4x - 2\dfrac{{{{\text{x}}^6}{\text{ - 18}}{{\text{x}}^4}{\text{ + 16}}{{\text{x}}^3}{\text{ + 28}}{{\text{x}}^2}{\text{ - 32x + 8}}}}{{{{\text{x}}^2}{\text{ + 4x - 2}}}}.

x2 + 4x - 2)1x6 - 18x4 + 16x3 + 28x2 - 32x + 8 x6 + 4x5 - 2x4 \-4x5 - 16x4 + 16x3 + 28x2 - 32x + 8 4x5 - 16x4 + 8x3 8x3 + 28x2 - 32x + 8 8x3 + 32x2 - 16x 4x2 - 16x + 8 4x2 - 16x + 8 0  !!!!1x6 - 18x4 + 16x3 + 28x2 - 32x + 8 x6 + 4x5 - 2x4 \-4x5 - 16x4 + 16x3 + 28x2 - 32x + 8 4x5 - 16x4 + 8x3 8x3 + 28x2 - 32x + 8 8x3 + 32x2 - 16x -4x2 - 16x + 8 -4x2 - 16x + 8 0  x4 - 4x3 + 8x - 4{{\text{x}}^2}{\text{ + 4x - 2}}\mathop{\left){\vphantom{1\begin{gathered} {{\text{x}}^6}{\text{ - 18}}{{\text{x}}^4}{\text{ + 16}}{{\text{x}}^3}{\text{ + 28}}{{\text{x}}^2}{\text{ - 32x + 8}} \\\ \underline {{{\text{x}}^6}{\text{ + 4}}{{\text{x}}^5}{\text{ - 2}}{{\text{x}}^4}} \\\ \- 4{{\text{x}}^5}{\text{ - 16}}{{\text{x}}^4}{\text{ + 16}}{{\text{x}}^3}{\text{ + 28}}{{\text{x}}^2}{\text{ - 32x + }}{\text{8}} \\\ \underline { - 4{{\text{x}}^5}{\text{ - 16}}{{\text{x}}^4}{\text{ + 8}}{{\text{x}}^3}} \\\ {\text{8}}{{\text{x}}^3}{\text{ + 28}}{{\text{x}}^2}{\text{ - 32x + 8}} \\\ \underline {8{{\text{x}}^3}{\text{ + 32}}{{\text{x}}^2}{\text{ - 16x}}} \\\ {\text{4}}{{\text{x}}^2}{\text{ - 16x + 8}} \\\ \underline {{\text{4}}{{\text{x}}^2}{\text{ - 16x + 8}}} \\\ \underline 0 {\text{ }} \\\ \end{gathered} }}\right. \\!\\!\\!\\!\overline{\,\,\,\vphantom 1{\begin{gathered} {{\text{x}}^6}{\text{ - 18}}{{\text{x}}^4}{\text{ + 16}}{{\text{x}}^3}{\text{ + 28}}{{\text{x}}^2}{\text{ - 32x + 8}} \\\ \underline {{{\text{x}}^6}{\text{ + 4}}{{\text{x}}^5}{\text{ - 2}}{{\text{x}}^4}} \\\ \- 4{{\text{x}}^5}{\text{ - 16}}{{\text{x}}^4}{\text{ + 16}}{{\text{x}}^3}{\text{ + 28}}{{\text{x}}^2}{\text{ - 32x + }}{\text{8}} \\\ \underline { - 4{{\text{x}}^5}{\text{ - 16}}{{\text{x}}^4}{\text{ + 8}}{{\text{x}}^3}} \\\ {\text{8}}{{\text{x}}^3}{\text{ + 28}}{{\text{x}}^2}{\text{ - 32x + 8}} \\\ \underline {8{{\text{x}}^3}{\text{ + 32}}{{\text{x}}^2}{\text{ - 16x}}} \\\ {\text{-4}}{{\text{x}}^2}{\text{ - 16x + 8}} \\\ \underline {{\text{-4}}{{\text{x}}^2}{\text{ - 16x + 8}}} \\\ \underline 0 {\text{ }} \\\ \end{gathered} }}} \limits^{\displaystyle \,\,\, {{{\text{x}}^4}{\text{ - 4}}{{\text{x}}^3}{\text{ + 8x - 4}}}}
quotient = x4 - 4x3 + 8x - 4{{\text{x}}^4}{\text{ - 4}}{{\text{x}}^3}{\text{ + 8x - 4}}
Now, to find the roots of quotient, we will put quotient = 0
Therefore, we get
x4 - 4x3 + 8x - 4{{\text{x}}^4}{\text{ - 4}}{{\text{x}}^3}{\text{ + 8x - 4}} = 0
(x2  2)(x2 - 4x + 2) = 0{\text{(}}{{\text{x}}^2}{\text{ }} - {\text{ 2)(}}{{\text{x}}^2}{\text{ - 4x + 2) = 0}}
Solving (x2 - 2) = 0({{\text{x}}^2}{\text{ - 2) = 0}}. We will use the property (x2 - y2) = (x + y)(x - y){\text{(}}{{\text{x}}^2}{\text{ - }}{{\text{y}}^2}{\text{) = (x + y)(x - y)}}, we get
x = ±2{\text{x = }} \pm \sqrt 2
Solving x2 - 4x + 2 = 0{{\text{x}}^2}{\text{ - 4x + 2 = 0}} with the help of Sridharacharya rule x =  - b ±b2 - 4ac2a{\text{x = }}\dfrac{{{\text{ - b }} \pm \sqrt {{{\text{b}}^2}{\text{ - 4ac}}} }}{{2{\text{a}}}}, we get
x = 2±2{\text{x = 2}} \pm \sqrt 2
So, the roots are ±2\pm \sqrt 2, 2±22 \pm \sqrt 2 and 2±6- 2 \pm \sqrt 6.

Note: When we come up with such types of questions, we will first make an equation with the roots given in the question. Now, to find the other roots, we have to divide the given equation by the equation formed. After it, we will apply the division theorem to find the quotient and the roots will be found by putting the equation of quotient equals to zero.