Solveeit Logo

Question

Mathematics Question on Trigonometric Equations

Solve the equation sinx3sin2x+sin3x=cosx3cos2x+cos3xsinx - 3sin2x + sin3x = cosx - 3cos2x + cos3x.

A

nπ2π8,nI\frac{n\pi}{2}-\frac{\pi}{8}, n \in I

B

nπ2,nI\frac{n\pi}{2}, n \in I

C

nπ2+π8,nI\frac{n\pi}{2}+\frac{\pi}{8}, n \in I

D

nπ,nIn\pi, n \in I

Answer

nπ2+π8,nI\frac{n\pi}{2}+\frac{\pi}{8}, n \in I

Explanation

Solution

Given sinx3sin2x+sin3x=cosxsinx - 3sin2x + sin3x = cosx 3cos2x+cos3x- 3cos2x + cos3x (sin3x+sinx)3sin2x=(cos3x+cosx)3cos2x\Rightarrow \left(sin3x + sinx\right) - 3sin2x = \left(cos3x + cosx\right) - 3cos2x 2sin2xcosx3sin2x=2cos2xcosx3cos2x\Rightarrow 2sin2x\, cosx - 3sin2x = 2cos2xcosx - 3cos2x sin2x(2cosx3)=cos2x(2cosx3)\Rightarrow sin2x\left(2cosx - 3\right) = cos2x\left(2cosx - 3\right) sin2x=cos2x(cosx32)\Rightarrow sin2x=cos2x\quad\left(\because cos\,x \ne\frac{3}{2}\right) tan2x=1\Rightarrow tan2x = 1 tan2x=tanπ4\Rightarrow tan2x=tan \frac{\pi}{4} 2x=nπ+π4\Rightarrow 2x=n\pi+\frac{\pi}{4} x=nπ2+π8,nI\Rightarrow x=\frac{n\pi}{2}+\frac{\pi}{8}, n \in I.