Question
Mathematics Question on Trigonometric Equations
Solve the equation sinx−3sin2x+sin3x=cosx−3cos2x+cos3x.
A
2nπ−8π,n∈I
B
2nπ,n∈I
C
2nπ+8π,n∈I
D
nπ,n∈I
Answer
2nπ+8π,n∈I
Explanation
Solution
Given sinx−3sin2x+sin3x=cosx −3cos2x+cos3x ⇒(sin3x+sinx)−3sin2x=(cos3x+cosx)−3cos2x ⇒2sin2xcosx−3sin2x=2cos2xcosx−3cos2x ⇒sin2x(2cosx−3)=cos2x(2cosx−3) ⇒sin2x=cos2x(∵cosx=23) ⇒tan2x=1 ⇒tan2x=tan4π ⇒2x=nπ+4π ⇒x=2nπ+8π,n∈I.