Question
Question: Solve the equation\[{{\sin }^{3}}x\cos 3x+{{\cos }^{3}}x\sin 3x+\dfrac{3}{8}=0\]....
Solve the equationsin3xcos3x+cos3xsin3x+83=0.
Solution
Hint: Get the values ofsin3x and cos3xfrom the trigonometric identities of sin3xandcos3x. Identities are given as sin3x=3sinx−4sin3x, cos3x=4cos3x−3cosx
Simplify it further and again use trigonometric identity of sin(A+B)=sinAcosB+cosAsinB.General solution of equation sinx=siny,is given asx=nπ±(−1), wheren∈z.
Complete step-by-step answer:
Given expression in the problem is
sin3xcos3x+cos3xsin3x+83=0...........(1)
We know the algebraic identities ofsin3x andcos3xare given as
sin3x=3sinx−4sin3x
cos3x=4cos3x−3cosx
Hence, we can get the value ofsin3x and cos3xfrom both the expression as
{{\sin }^{3}}x=\dfrac{3\sin x-\sin 3x}{4}$$$$\to (2)
{{\cos }^{3}}x=\dfrac{3\cos x+\cos 3x}{4}$$$$\to (3)
Now, put the value ofsin3x and cos3xfrom the equation (2) and (3) to the equation (1). So, we get