Solveeit Logo

Question

Question: Solve the equation \[{\left( {\sin \theta } \right)^3}\left( {\cos \theta } \right) - {\left( {\cos ...

Solve the equation (sinθ)3(cosθ)(cosθ)3(sinθ)=14{\left( {\sin \theta } \right)^3}\left( {\cos \theta } \right) - {\left( {\cos \theta } \right)^3}\left( {\sin \theta } \right) = \dfrac{1}{4} for the value of θ\theta .

Explanation

Solution

Hint- Here, we will be simplifying the LHS of the given equation by using the formulas which are sin2θ=2(sinθ)(cosθ)\sin 2\theta = 2\left( {\sin \theta } \right)\left( {\cos \theta } \right) and cos2θ=[(cosθ)2(sinθ)2]\cos 2\theta = \left[ {{{\left( {\cos \theta } \right)}^2} - {{\left( {\sin \theta } \right)}^2}} \right]. Then, with the help of the condition i.e., when sinx=1\sin x = - 1 then x=2nππ2x = 2n\pi - \dfrac{\pi }{2} we will find the required values of θ\theta .

“Complete step-by-step answer:”
The given equation is (sinθ)3(cosθ)(cosθ)3(sinθ)=14{\left( {\sin \theta } \right)^3}\left( {\cos \theta } \right) - {\left( {\cos \theta } \right)^3}\left( {\sin \theta } \right) = \dfrac{1}{4}.
This equation can be simplified as under

(sinθ)(cosθ)[(sinθ)2(cosθ)2]=14 4(sinθ)(cosθ)[(cosθ)2(sinθ)2]=1 2[2(sinθ)(cosθ)][(cosθ)2(sinθ)2]=1 (1)  \Rightarrow \left( {\sin \theta } \right)\left( {\cos \theta } \right)\left[ {{{\left( {\sin \theta } \right)}^2} - {{\left( {\cos \theta } \right)}^2}} \right] = \dfrac{1}{4} \\\ \Rightarrow - 4\left( {\sin \theta } \right)\left( {\cos \theta } \right)\left[ {{{\left( {\cos \theta } \right)}^2} - {{\left( {\sin \theta } \right)}^2}} \right] = 1 \\\ \Rightarrow - 2\left[ {2\left( {\sin \theta } \right)\left( {\cos \theta } \right)} \right]\left[ {{{\left( {\cos \theta } \right)}^2} - {{\left( {\sin \theta } \right)}^2}} \right] = 1{\text{ }} \to {\text{(1)}} \\\

As we know that sin2θ=2(sinθ)(cosθ)\sin 2\theta = 2\left( {\sin \theta } \right)\left( {\cos \theta } \right) and cos2θ=[(cosθ)2(sinθ)2]\cos 2\theta = \left[ {{{\left( {\cos \theta } \right)}^2} - {{\left( {\sin \theta } \right)}^2}} \right]
Using the above formulas, equation (1) becomes,

2[sin2θ][cos2θ]=1 [2(sin2θ)(cos2θ)]=1 (2)  \Rightarrow - 2\left[ {\sin 2\theta } \right]\left[ {\cos 2\theta } \right] = 1 \\\ \Rightarrow - \left[ {2\left( {\sin 2\theta } \right)\left( {\cos 2\theta } \right)} \right] = 1{\text{ }} \to {\text{(2)}} \\\

In the formula sin2θ=2(sinθ)(cosθ)\sin 2\theta = 2\left( {\sin \theta } \right)\left( {\cos \theta } \right) replace θ\theta by 2θ2\theta , we get

sin2(2θ)=2(sin2θ)(cos2θ) sin4θ=2(sin2θ)(cos2θ) (3)  \Rightarrow \sin 2\left( {2\theta } \right) = 2\left( {\sin 2\theta } \right)\left( {\cos 2\theta } \right) \\\ \Rightarrow \sin 4\theta = 2\left( {\sin 2\theta } \right)\left( {\cos 2\theta } \right){\text{ }} \to {\text{(3)}} \\\

Using equation (3) in equation (2), we get

[sin4θ]=1 sin4θ=1  \Rightarrow - \left[ {\sin 4\theta } \right] = 1 \\\ \Rightarrow \sin 4\theta = - 1 \\\

Also we know that when sinx=1\sin x = - 1 then x=2nππ2x = 2n\pi - \dfrac{\pi }{2} where nZn \in Z (Z is set of integers)
Replacing x in the above condition by 4θ4\theta , we get

4θ=2nππ2 θ=2nπ4π2×4 θ=nπ2π8 where nZ  4\theta = 2n\pi - \dfrac{\pi }{2} \\\ \Rightarrow \theta = \dfrac{{2n\pi }}{4} - \dfrac{\pi }{{2 \times 4}} \\\ \Rightarrow \theta = \dfrac{{n\pi }}{2} - \dfrac{\pi }{8}{\text{ where }}n \in Z \\\

Note- In these types of problems, we convert the trigonometric functions of smaller angle (i.e., θ\theta in this case) in the given equation to the trigonometric functions of larger angle (i.e. 4θ4\theta in this case). Also, in this problem sin4θ=1\sin 4\theta = - 1 is coming after simplification which means the values of 4θ4\theta which are possible are 2nππ22n\pi - \dfrac{\pi }{2} where n belongs to the set of integers.