Solveeit Logo

Question

Question: Solve the equation \[\left( {\cos x - \sin x} \right)\left( {2\tan x + 2} \right) = 0\]....

Solve the equation (cosxsinx)(2tanx+2)=0\left( {\cos x - \sin x} \right)\left( {2\tan x + 2} \right) = 0.

Explanation

Solution

Here, we need to solve the given equation. First, we will rewrite the given equation and convert tangent to sine and cosine. Then, we will simplify the equation using algebraic identity for the product of sum and difference of two numbers to form two equations. Finally, we will use the general solution for an equation of the form tanx=tanα\tan x = \tan \alpha to find the possible values of xx.

Formula Used:
We will use the following formulas:
The tangent of an angle θ\theta can be written as tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}.
The product of sum and difference of two numbers is given by the algebraic identity (ab)(a+b)=a2b2\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}.
If tanx=tanα\tan x = \tan \alpha , then the general solution is given by x=nπ+αx = n\pi + \alpha , where nn is an integer.

Complete step-by-step answer:
First, we will factor out 2 from the given equation, (cosxsinx)(2tanx+2)=0\left( {\cos x - \sin x} \right)\left( {2\tan x + 2} \right) = 0.
Thus, we get
2(cosxsinx)(tanx+1)=0\Rightarrow 2\left( {\cos x - \sin x} \right)\left( {\tan x + 1} \right) = 0
Dividing both sides of the equation by 2, we get
(cosxsinx)(tanx+1)=0\Rightarrow \left( {\cos x - \sin x} \right)\left( {\tan x + 1} \right) = 0
Now, we will rewrite the given equation in terms of sine and cosine of xx.
The tangent of an angle θ\theta can be written as tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}.
Thus, we get
tanx=sinxcosx\tan x = \dfrac{{\sin x}}{{\cos x}}
Substituting tanx=sinxcosx\tan x = \dfrac{{\sin x}}{{\cos x}} in the given equation (cosxsinx)(tanx+1)=0\left( {\cos x - \sin x} \right)\left( {\tan x + 1} \right) = 0, we get
(cosxsinx)(sinxcosx+1)=0\Rightarrow \left( {\cos x - \sin x} \right)\left( {\dfrac{{\sin x}}{{\cos x}} + 1} \right) = 0
Taking the L.C.M. and adding the terms, we get
(cosxsinx)(sinx+cosxcosx)=0\Rightarrow \left( {\cos x - \sin x} \right)\left( {\dfrac{{\sin x + \cos x}}{{\cos x}}} \right) = 0
Rewriting the expression, we get
1cosx(cosxsinx)(cosx+sinx)=0\Rightarrow \dfrac{1}{{\cos x}}\left( {\cos x - \sin x} \right)\left( {\cos x + \sin x} \right) = 0
Multiplying both sides by cosx\cos x, we get
cosxcosx(cosxsinx)(cosx+sinx)=0×cosx\Rightarrow \dfrac{{\cos x}}{{\cos x}}\left( {\cos x - \sin x} \right)\left( {\cos x + \sin x} \right) = 0 \times \cos x
Thus, we get
(cosxsinx)(cosx+sinx)=0\Rightarrow \left( {\cos x - \sin x} \right)\left( {\cos x + \sin x} \right) = 0………..(1)\left( 1 \right)
Substituting a=cosxa = \cos x and b=sinxb = \sin x in the algebraic identity (ab)(a+b)=a2b2\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}, we get
(cosxsinx)(cosx+sinx)=(cosx)2(sinx)2\Rightarrow \left( {\cos x - \sin x} \right)\left( {\cos x + \sin x} \right) = {\left( {\cos x} \right)^2} - {\left( {\sin x} \right)^2}
Therefore, we get
(cosxsinx)(cosx+sinx)=cos2xsin2x\Rightarrow \left( {\cos x - \sin x} \right)\left( {\cos x + \sin x} \right) = {\cos ^2}x - {\sin ^2}x……………….(2)\left( 2 \right)
From the equations (2)\left( 2 \right) and (1)\left( 1 \right), we get
cos2xsin2x=0\Rightarrow {\cos ^2}x - {\sin ^2}x = 0
Adding sin2x{\sin ^2}x to both sides of the equation, we get
cos2xsin2x+sin2x=0+sin2x cos2x=sin2x\begin{array}{l} \Rightarrow {\cos ^2}x - {\sin ^2}x + {\sin ^2}x = 0 + {\sin ^2}x\\\ \Rightarrow {\cos ^2}x = {\sin ^2}x\end{array}
Dividing both sides by cos2x{\cos ^2}x, we get
1=sin2xcos2x 1=(sinxcosx)2 1=tan2x\begin{array}{l} \Rightarrow 1 = \dfrac{{{{\sin }^2}x}}{{{{\cos }^2}x}}\\\ \Rightarrow 1 = {\left( {\dfrac{{\sin x}}{{\cos x}}} \right)^2}\\\ \Rightarrow 1 = {\tan ^2}x\end{array}
Taking the square root of both sides, we get
tanx=±1 tanx=±1\begin{array}{l} \Rightarrow \tan x = \pm \sqrt 1 \\\ \Rightarrow \tan x = \pm 1\end{array}
Therefore, either tanx=1\tan x = 1 or tanx=1\tan x = - 1.
We know that the tangent of the angle measuring π4\dfrac{\pi }{4} is 1.
Substituting 1=tanπ41 = \tan \dfrac{\pi }{4} in the equations, we get
tanx=tanπ4\Rightarrow \tan x = \tan \dfrac{\pi }{4} or tanx=tanπ4\tan x = - \tan \dfrac{\pi }{4}
The expression of the form tanx - \tan x can be written as tan(x)\tan \left( { - x} \right).
Therefore, we get
tanπ4=tan(π4)- \tan \dfrac{\pi }{4} = \tan \left( { - \dfrac{\pi }{4}} \right)
Therefore, the equations become
tanx=tanπ4\Rightarrow \tan x = \tan \dfrac{\pi }{4} or tanx=tan(π4)\tan x = \tan \left( { - \dfrac{\pi }{4}} \right)
Now, we will find the general solution for the two equations.
If tanx=tanα\tan x = \tan \alpha , then the general solution is given by x=nπ+αx = n\pi + \alpha , where nn is an integer.
Since tanx=tanπ4\tan x = \tan \dfrac{\pi }{4}, we get
x=nπ+π4\Rightarrow x = n\pi + \dfrac{\pi }{4}
Since tanx=tan(π4)\tan x = \tan \left( { - \dfrac{\pi }{4}} \right), we get
x=nπ+(π4) x=nππ4\begin{array}{l} \Rightarrow x = n\pi + \left( { - \dfrac{\pi }{4}} \right)\\\ \Rightarrow x = n\pi - \dfrac{\pi }{4}\end{array}
Thus, we get the general solution of the equation (cosxsinx)(2tanx+2)=0\left( {\cos x - \sin x} \right)\left( {2\tan x + 2} \right) = 0 as x=nπ±π4x = n\pi \pm \dfrac{\pi }{4}, where nn is an integer.

Note: We can form the equations tanx=1\tan x = 1 or tanx=1\tan x = - 1 without converting tan to cosine and sine, and without using the algebraic identity.
We rewrote the given equation as (cosxsinx)(tanx+1)=0\left( {\cos x - \sin x} \right)\left( {\tan x + 1} \right) = 0.
Thus, we get either (cosxsinx)=0\left( {\cos x - \sin x} \right) = 0 or (tanx+1)=0\left( {\tan x + 1} \right) = 0.
Simplifying the equation (cosxsinx)=0\left( {\cos x - \sin x} \right) = 0, we get
cosx=sinx 1=tanx\begin{array}{l} \Rightarrow \cos x = \sin x\\\ \Rightarrow 1 = \tan x\end{array}
Simplifying the equation (tanx+1)=0\left( {\tan x + 1} \right) = 0, we get
tanx=1\Rightarrow \tan x = - 1
Therefore, we have formed the equations tanx=1\tan x = 1 or tanx=1\tan x = - 1. The rest of the solution to find the general solution remains the same.