Solveeit Logo

Question

Mathematics Question on Matrices

Solve the equation for x,y,z and t if 2[xy\yt]\begin{bmatrix}x&y\\\y&t\end{bmatrix}+3[11\02]\begin{bmatrix}1&-1\\\0&2\end{bmatrix}=3[35\46]\begin{bmatrix}3&5\\\4&6\end{bmatrix}

Answer

2[xy\yt]\begin{bmatrix}x&y\\\y&t\end{bmatrix}+3[11\02]\begin{bmatrix}1&-1\\\0&2\end{bmatrix}=3[35\46]\begin{bmatrix}3&5\\\4&6\end{bmatrix}

\Rightarrow [2x2z\2y2t]\begin{bmatrix}2x&2z\\\2y&2t\end{bmatrix}+[33\06]\begin{bmatrix}3&-3\\\0&6\end{bmatrix}=[915\1218]\begin{bmatrix}9&15\\\12&18\end{bmatrix}

[2x+32z3\2y2t+6]\Rightarrow \begin{bmatrix}2x+3&2z-3\\\2y&2t+6\end{bmatrix}=[915\1218]\begin{bmatrix}9&15\\\12&18\end{bmatrix}
Comparing the corresponding elements of these two matrices, we get:
2x+3=9
\Rightarrow x=3
2y=12
\Rightarrow y=6
2z-3=15
\Rightarrow 2z=18
z=9
2t+6=18
2t=12
t=6.

\therefore x=3,y=6,z=9 and t=6