Solveeit Logo

Question

Question: Solve the equation for \[x\]: \[\dfrac{1}{{x + 1}} + \dfrac{2}{{x + 2}} = \dfrac{4}{{x + 4}}\;\;\...

Solve the equation for xx:
1x+1+2x+2=4x+4        ,x1,2,4\dfrac{1}{{x + 1}} + \dfrac{2}{{x + 2}} = \dfrac{4}{{x + 4}}\;\;\;\;,x \ne - 1, - 2, - 4

Explanation

Solution

Here we will use the LCM method by multiplying and dividing the two polynomial fractions in the LHS side using common factors and ensure that denominators are the same.
We will find the roots of xx by using the quadratic equation formula i.e. for any given quadratic equation ax2+bx+c=0a{x^2} + bx + c = 0, the roots of xx is x=b±b24ac2ax = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}, where aa is the coefficient of x2{x^2},bb is the coefficient of xx and cc is the constant term.

Complete step-by-step answer:
Step 1: For the given equation, 1x+1+2x+2=4x+4\dfrac{1}{{x + 1}} + \dfrac{2}{{x + 2}} = \dfrac{4}{{x + 4}}, by multiplying and dividing the two polynomial fractions in the LHS side using common factors we ensure that denominators are the same.
1(x+2)(x+1)(x+2)+2(x+1)(x+2)=4x+4\dfrac{{1 \cdot \left( {x + 2} \right)}}{{\left( {x + 1} \right)\left( {x + 2} \right)}} + \dfrac{{2 \cdot \left( {x + 1} \right)}}{{\left( {x + 2} \right)}} = \dfrac{4}{{x + 4}}…. (1)
Step 2: Now, in the above equation (1) by multiplying the factors with 11 and 22 in LHS side and then adding the two fractions we get:
x+2+2x+2(x+1)(x+2)=4x+4\Rightarrow \dfrac{{x + 2 + 2x + 2}}{{\left( {x + 1} \right)\left( {x + 2} \right)}} = \dfrac{4}{{x + 4}}…. (2)
Step 3: Now, by adding the coefficients of xx and the constants in LHS in the equation (2) we get:
3x+4(x+1)(x+2)=4x+4\Rightarrow \dfrac{{3x + 4}}{{\left( {x + 1} \right)\left( {x + 2} \right)}} = \dfrac{4}{{x + 4}}…. (3)
Step 4: For the equation 3x+4(x+1)(x+2)=4x+4\dfrac{{3x + 4}}{{\left( {x + 1} \right)\left( {x + 2} \right)}} = \dfrac{4}{{x + 4}}, by multiplying the denominator of the RHS side which is x+4x + 4with the numerator of the LHS side which is 3x+43x + 4. Similarly, by multiplying the denominator of the LHS side which is (x+1)(x+2)\left( {x + 1} \right)\left( {x + 2} \right)with the numerator of the RHS side which is 44.
(3x+4)(x+4)=4(x+1)(x+2)\Rightarrow \left( {3x + 4} \right)\left( {x + 4} \right) = 4\left( {x + 1} \right)\left( {x + 2} \right) …. (4)
Step 4: Now, simplifying the above equation (4):
First of all, opening the brackets and multiplying them to make an equation:

(3x+4)(x+4)=4(x+1)(x+2) 3x2+12x+4x+16=4(x2+2x+1x+2)  \left( {3x + 4} \right)\left( {x + 4} \right) = 4\left( {x + 1} \right)\left( {x + 2} \right) \\\ \Rightarrow 3{x^2} + 12x + 4x + 16 = 4\left( {{x^2} + 2x + 1x + 2} \right) \\\

In the RHS side, by multiplying each factor by 4:
3x2+16x+16=4x2+8x+4x+8\Rightarrow 3{x^2} + 16x + 16 = 4{x^2} + 8x + 4x + 8…. (5)
Step 6: For the equation (5), we will get the variable xx in LHS to form a quadratic equation by taking RHS to the LHS side:
x2+4x+8=0\Rightarrow - {x^2} + 4x + 8 = 0… (6)
Step 7: Now, by solving the above equation (6), using a quadratic formula that for ax2+bx+c=0a{x^2} + bx + c = 0, x=b±b24ac2ax = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}.
x=4±42(4×(1)×8)2×(1)\Rightarrow x = \dfrac{{ - 4 \pm \sqrt {{4^2} - \left( {4 \times \left( { - 1} \right) \times 8} \right)} }}{{2 \times \left( { - 1} \right)}} , where b=4,a=1,c=8b = 4,a = - 1,c = 8. ….. (7)
Step 8: As we know, 42=16{4^2} = 16, 2×(1)=22 \times \left( { - 1} \right) = - 2 and 4×(1)×8=324 \times \left( { - 1} \right) \times 8 = - 32, substituting these values in the above equation (7):
x=4±42(4×(1)×8)2×(1)x = \dfrac{{ - 4 \pm \sqrt {{4^2} - \left( {4 \times \left( { - 1} \right) \times 8} \right)} }}{{2 \times \left( { - 1} \right)}}:
By putting the value as given:
4±16(32)2=4±482\Rightarrow \dfrac{{ - 4 \pm \sqrt {16 - \left( { - 32} \right)} }}{{ - 2}} = \dfrac{{ - 4 \pm \sqrt {48} }}{{ - 2}} …..…. (8)
Step 9: Now, we know that the factors of 48=4×4×348 = 4 \times 4 \times 3, so 48=43\sqrt {48} = 4\sqrt 3 . So, using this result in the above term (8):

x=4±482 =4±432  x = \dfrac{{ - 4 \pm \sqrt {48} }}{{ - 2}} \\\ = \dfrac{{ - 4 \pm 4\sqrt 3 }}{{ - 2}} \\\

Step 10: Now, Dividing 2 - 2 in the denominator with the numerator 4±43- 4 \pm 4\sqrt 3 we will get the final result xx from the equation x=4±432x = \dfrac{{ - 4 \pm 4\sqrt 3 }}{{ - 2}}.
x=2±23\Rightarrow x = 2 \pm 2\sqrt 3
Step 11: Since x=2±23x = 2 \pm 2\sqrt 3 so we have two values of xx, x=2+23x = 2 + 2\sqrt 3 and x=223x = 2 - 2\sqrt 3 . Also, we notice that in the result thus obtained x1,2,4x \ne - 1, - 2, - 4 satisfying the conditions given in the question.

So, there are two possible values of xx are x=2+23x = 2 + 2\sqrt 3 and x=223x = 2 - 2\sqrt 3

Note: Students used to make mistakes in calculating the value of xx. You should also remember that since there are three xx terms in the equation 1x+1+2x+2=4x+4        ,x1,2,4\dfrac{1}{{x + 1}} + \dfrac{2}{{x + 2}} = \dfrac{4}{{x + 4}}\;\;\;\;,x \ne - 1, - 2, - 4 , so do not take LCM of all denominators in one go. This will complicate the equation.