Solveeit Logo

Question

Question: Solve the equation: \(\cos 3x.{\cos ^3}x + \sin 3x.{\sin ^3}x = 0\) \( (a){\text{ }}\left( {...

Solve the equation:
cos3x.cos3x+sin3x.sin3x=0\cos 3x.{\cos ^3}x + \sin 3x.{\sin ^3}x = 0
(a) (2n+1)π4, nI (b) (2n+1)π2, nI (c) (2n+1)π3, nI (d) (2n+1)π6, nI  (a){\text{ }}\left( {2n + 1} \right)\dfrac{\pi }{4},{\text{ n}} \in {\text{I}} \\\ {\text{(b) }}\left( {2n + 1} \right)\dfrac{\pi }{2},{\text{ n}} \in {\text{I}} \\\ {\text{(c) }}\left( {2n + 1} \right)\dfrac{\pi }{3},{\text{ n}} \in {\text{I}} \\\ {\text{(d) }}\left( {2n + 1} \right)\dfrac{\pi }{6},{\text{ n}} \in {\text{I}} \\\

Explanation

Solution

Hint – In this question use the formula that cos3x=4cos3x3cosx,sin3x=3sinx4sin3x\cos 3x = 4{\cos ^3}x - 3\cos x,\sin 3x = 3\sin x - 4{\sin ^3}x. On simplification and application of basic algebraic identity[a3b3=(ab)(a2+b2+ab)],[a2b2=(ab)(a+b)]\left[ {{a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)} \right],\left[ {{a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)} \right], will help manipulating the equation to the final result.

Complete step-by-step answer:
Given trigonometric equation is
cos3x.cos3x+sin3x.sin3x=0\cos 3x.{\cos ^3}x + \sin 3x.{\sin ^3}x = 0
Now as we know that cos3x=4cos3x3cosx,sin3x=3sinx4sin3x\cos 3x = 4{\cos ^3}x - 3\cos x,\sin 3x = 3\sin x - 4{\sin ^3}x so use this property in above equation that is
(4cos3x3cosx).cos3x+(3sinx4sin3x).sin3x=0\Rightarrow \left( {4{{\cos }^3}x - 3\cos x} \right).{\cos ^3}x + \left( {3\sin x - 4{{\sin }^3}x} \right).{\sin ^3}x = 0
Now simplify this equation we have,
4cos6x3cos4x+3sin4x4sin6x=0\Rightarrow 4{\cos ^6}x - 3{\cos ^4}x + 3{\sin ^4}x - 4{\sin ^6}x = 0
4(cos6xsin6x)3(cos4xsin4x)=0\Rightarrow 4\left( {{{\cos }^6}x - {{\sin }^6}x} \right) - 3\left( {{{\cos }^4}x - {{\sin }^4}x} \right) = 0
4[(cos2x)3(sin2x)3]3[(cos2x)2(sin2x)2]=0\Rightarrow 4\left[ {{{\left( {{{\cos }^2}x} \right)}^3} - {{\left( {{{\sin }^2}x} \right)}^3}} \right] - 3\left[ {{{\left( {{{\cos }^2}x} \right)}^2} - {{\left( {{{\sin }^2}x} \right)}^2}} \right] = 0
Now use the property that [a3b3=(ab)(a2+b2+ab)],[a2b2=(ab)(a+b)]\left[ {{a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)} \right],\left[ {{a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)} \right] so we have,
4[(cos2x)(sin2x)][cos4x+sin4x+cos2xsin2x]3[(cos2x)(sin2x)][cos2x+sin2x]=0\Rightarrow 4\left[ {\left( {{{\cos }^2}x} \right) - \left( {{{\sin }^2}x} \right)} \right]\left[ {{{\cos }^4}x + {{\sin }^4}x + {{\cos }^2}x{{\sin }^2}x} \right] - 3\left[ {\left( {{{\cos }^2}x} \right) - \left( {{{\sin }^2}x} \right)} \right]\left[ {{{\cos }^2}x + {{\sin }^2}x} \right] = 0
Now as we know that sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1 so we have,
(cos2xsin2x)[4(cos4x+sin4x+cos2xsin2x)3]=0\Rightarrow \left( {{{\cos }^2}x - {{\sin }^2}x} \right)\left[ {4\left( {{{\cos }^4}x + {{\sin }^4}x + {{\cos }^2}x{{\sin }^2}x} \right) - 3} \right] = 0
Now add and subtract by cos2xsin2x{\cos ^2}x{\sin ^2}x in the term cos4x+sin4x+cos2xsin2x{\cos ^4}x + {\sin ^4}x + {\cos ^2}x{\sin ^2}x we have
(cos2x)[4(cos4x+sin4x+2cos2xsin2xcos2xsin2x)3]=0\Rightarrow \left( {\cos 2x} \right)\left[ {4\left( {{{\cos }^4}x + {{\sin }^4}x + 2{{\cos }^2}x{{\sin }^2}x - {{\cos }^2}x{{\sin }^2}x} \right) - 3} \right] = 0, [cos2xsin2x=cos2x]\left[ {\because {{\cos }^2}x - {{\sin }^2}x = \cos 2x} \right]
Now use the property (a+b)2=a2+b2+2ab{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab we have,
(cos2x)[4(sin2x+cos2x)24cos2xsin2x3]=0\Rightarrow \left( {\cos 2x} \right)\left[ {4{{\left( {{{\sin }^2}x + {{\cos }^2}x} \right)}^2} - 4{{\cos }^2}x{{\sin }^2}x - 3} \right] = 0
(cos2x)[44cos2xsin2x3]=0\Rightarrow \left( {\cos 2x} \right)\left[ {4 - 4{{\cos }^2}x{{\sin }^2}x - 3} \right] = 0
(cos2x)[1(2cosxsinx)2]=0\Rightarrow \left( {\cos 2x} \right)\left[ {1 - {{\left( {2\cos x\sin x} \right)}^2}} \right] = 0
(cos2x)[1sin22x]=0\Rightarrow \left( {\cos 2x} \right)\left[ {1 - {{\sin }^2}2x} \right] = 0, [sin2x=2sinxcosx]\left[ {\because \sin 2x = 2\sin x\cos x} \right]
(cos2x)[cos22x]=0\Rightarrow \left( {\cos 2x} \right)\left[ {{{\cos }^2}2x} \right] = 0, [1sin22x=cos22x]\left[ {\because 1 - {{\sin }^2}2x = {{\cos }^2}2x} \right]
cos32x=0\Rightarrow {\cos ^3}2x = 0
cos2x=0=cos[(2n+1)π2]\Rightarrow \cos 2x = 0 = \cos \left[ {\left( {2n + 1} \right)\dfrac{\pi }{2}} \right] Where, n = 0, 1, 2, 3...
Now on comparing we have,
2x=(2n+1)π22x = \left( {2n + 1} \right)\dfrac{\pi }{2}
x=(2n+1)π4\Rightarrow x = \left( {2n + 1} \right)\dfrac{\pi }{4}, nIn \in I
So this is the required solution.
Hence option (A) is the correct answer.

Note – It is always advisable to remember basic trigonometric identity like sin2x=2sinxcosx\sin 2x = 2\sin x\cos x, 1sin22x=cos22x1 - {\sin ^2}2x = {\cos ^2}2x and others like cos2x=cos2xsin2x\cos 2x = {\cos ^2}x - {\sin ^2}x, 1+tan2x=sec2x1 + {\tan ^2}x = {\sec ^2}x etc. helps solving problems of this kind. The verification of cos4θ=0=cos[(2n+1)π2]\cos 4\theta = 0 = \cos \left[ {\left( {2n + 1} \right)\dfrac{\pi }{2}} \right] can be provided by the fact that n in this case varies form n = 0, 1, 2... that is set of whole numbers. So if n=0, then we will have cosπ2\cos \dfrac{\pi }{2} which eventually will be zero. Now if we substitute 1 in place of n we get cos3π2\cos \dfrac{{3\pi }}{2} which is again zero. Thus cos[(2n+1)π2]\cos \left[ {\left( {2n + 1} \right)\dfrac{\pi }{2}} \right] is the general value for any cosθ=0\cos \theta = 0.