Question
Question: Solve the equation: \(\cos 3x.{\cos ^3}x + \sin 3x.{\sin ^3}x = 0\) \( (a){\text{ }}\left( {...
Solve the equation:
cos3x.cos3x+sin3x.sin3x=0
(a) (2n+1)4π, n∈I (b) (2n+1)2π, n∈I (c) (2n+1)3π, n∈I (d) (2n+1)6π, n∈I
Solution
Hint – In this question use the formula that cos3x=4cos3x−3cosx,sin3x=3sinx−4sin3x. On simplification and application of basic algebraic identity[a3−b3=(a−b)(a2+b2+ab)],[a2−b2=(a−b)(a+b)], will help manipulating the equation to the final result.
Complete step-by-step answer:
Given trigonometric equation is
cos3x.cos3x+sin3x.sin3x=0
Now as we know that cos3x=4cos3x−3cosx,sin3x=3sinx−4sin3x so use this property in above equation that is
⇒(4cos3x−3cosx).cos3x+(3sinx−4sin3x).sin3x=0
Now simplify this equation we have,
⇒4cos6x−3cos4x+3sin4x−4sin6x=0
⇒4(cos6x−sin6x)−3(cos4x−sin4x)=0
⇒4[(cos2x)3−(sin2x)3]−3[(cos2x)2−(sin2x)2]=0
Now use the property that [a3−b3=(a−b)(a2+b2+ab)],[a2−b2=(a−b)(a+b)] so we have,
⇒4[(cos2x)−(sin2x)][cos4x+sin4x+cos2xsin2x]−3[(cos2x)−(sin2x)][cos2x+sin2x]=0
Now as we know that sin2x+cos2x=1 so we have,
⇒(cos2x−sin2x)[4(cos4x+sin4x+cos2xsin2x)−3]=0
Now add and subtract by cos2xsin2x in the term cos4x+sin4x+cos2xsin2x we have
⇒(cos2x)[4(cos4x+sin4x+2cos2xsin2x−cos2xsin2x)−3]=0, [∵cos2x−sin2x=cos2x]
Now use the property (a+b)2=a2+b2+2ab we have,
⇒(cos2x)[4(sin2x+cos2x)2−4cos2xsin2x−3]=0
⇒(cos2x)[4−4cos2xsin2x−3]=0
⇒(cos2x)[1−(2cosxsinx)2]=0
⇒(cos2x)[1−sin22x]=0, [∵sin2x=2sinxcosx]
⇒(cos2x)[cos22x]=0, [∵1−sin22x=cos22x]
⇒cos32x=0
⇒cos2x=0=cos[(2n+1)2π] Where, n = 0, 1, 2, 3...
Now on comparing we have,
2x=(2n+1)2π
⇒x=(2n+1)4π, n∈I
So this is the required solution.
Hence option (A) is the correct answer.
Note – It is always advisable to remember basic trigonometric identity like sin2x=2sinxcosx, 1−sin22x=cos22x and others like cos2x=cos2x−sin2x, 1+tan2x=sec2x etc. helps solving problems of this kind. The verification of cos4θ=0=cos[(2n+1)2π] can be provided by the fact that n in this case varies form n = 0, 1, 2... that is set of whole numbers. So if n=0, then we will have cos2π which eventually will be zero. Now if we substitute 1 in place of n we get cos23π which is again zero. Thus cos[(2n+1)2π] is the general value for any cosθ=0.