Solveeit Logo

Question

Question: Solve the equation \[8{{x}^{3}}-20{{x}^{2}}+6x+9=0\] given that the equation has multiple roots....

Solve the equation 8x320x2+6x+9=08{{x}^{3}}-20{{x}^{2}}+6x+9=0 given that the equation has multiple roots.

Explanation

Solution

We need to solve the equation 8x320x2+6x+9=08{{x}^{3}}-20{{x}^{2}}+6x+9=0. Since the equation is of degree 33, we need to find the factor of this equation using the trial and error method. The value of xx for which the given polynomial is zero will form one root and hence a factor will be obtained. Then divide the given polynomial by this factor using a long division method to get a quotient and remainder and write in the form Dividend=divisor×quotient+remainderDividend=divisor\times quotient+remainder. Now rearrange the terms to get two more other factors. By substituting these factors to 00, the values of xx will be obtained.

Complete step-by-step solution
We need to solve the equation 8x320x2+6x+9=08{{x}^{3}}-20{{x}^{2}}+6x+9=0.
Let p(x)=8x320x2+6x+9p(x)=8{{x}^{3}}-20{{x}^{2}}+6x+9 .
First, we have to find the factor of this equation. Since the given equation is of degree 3, there will be 3 factors and hence 3 roots.
The first root can be found out using the trial and error method, i.e. substitute some value for xx such that the result will be a zero.
Let us check the value of the equation at x=12x=-\dfrac{1}{2} . So the given equation will be written as
p(12)=8×(12)320×(12)2+6×(12)+9p\left( -\dfrac{1}{2} \right)=8\times {{\left( -\dfrac{1}{2} \right)}^{3}}-20\times {{\left( -\dfrac{1}{2} \right)}^{2}}+6\times \left( -\dfrac{1}{2} \right)+9
By simplifying the above equation, we get
p(12)=8×1820×143+9p\left( -\dfrac{1}{2} \right)=8\times -\dfrac{1}{8}-20\times \dfrac{1}{4}-3+9
When we solve this, we get
p(12)=15+6=1+1p\left( -\dfrac{1}{2} \right)=-1-5+6=-1+1
p(12)=0\Rightarrow p\left( -\dfrac{1}{2} \right)=0
Therefore, one factor of the given polynomial is (x+12)\left( x+\dfrac{1}{2} \right) .
Now, let us divide p(x)=8x320x2+6x+9p(x)=8{{x}^{3}}-20{{x}^{2}}+6x+9by (x+12)\left( x+\dfrac{1}{2} \right) .
Step 1. Let us divide 8x38{{x}^{3}}by (x+12)\left( x+\dfrac{1}{2} \right) .
We will get 8x28{{x}^{2}} as quotient . Now multiply this with (x+12)\left( x+\dfrac{1}{2} \right) to get 8x3+4x28{{x}^{3}}+4{{x}^{2}}.
Let us subtract 8x3+4x28{{x}^{3}}+4{{x}^{2}} from 8x320x2+6x+98{{x}^{3}}-20{{x}^{2}}+6x+9 ,i.e
8x320x2+6x+98x34x2=24x2+6x+98{{x}^{3}}-20{{x}^{2}}+6x+9-8{{x}^{3}}-4{{x}^{2}}=-24{{x}^{2}}+6x+9
Step2: We should divide 24x2+6x+9-24{{x}^{2}}+6x+9 by (x+12)\left( x+\dfrac{1}{2} \right) . The quotient will be 24x-24x and multiplying this with (x+12)\left( x+\dfrac{1}{2} \right) we will get 24x212x-24{{x}^{2}}-12x .
Now, we can subtract 24x212x-24{{x}^{2}}-12x from 24x2+6x+9-24{{x}^{2}}+6x+9 , i.e
24x2+6x+9+24x2+12x=18x+9-24{{x}^{2}}+6x+9+24{{x}^{2}}+12x=18x+9
Step3: Let us divide 18x+918x+9 by (x+12)\left( x+\dfrac{1}{2} \right) . The quotient will be 1818 and multiplying this with (x+12)\left( x+\dfrac{1}{2} \right) we will get 18x+918x+9 .
Now, let subtract 18x+918x+9 from 18x+918x+9 , i.e
18x+918x9=018x+9-18x-9=0
That is, the remainder is 00 .

8{x^3} - 20{x^2} + 6x + 9\\\ 8{x^3} - 4{x^2}\\\ \begin{array}{*{20}{c}} \- & \+ \end{array}\\\ \\_\\_\\_\\_\\_\\_\\_\\_\\_\\_\\_\\_\\_\\_\\_\\_\\_\\\ \begin{array}{*{20}{c}} {}&\begin{array}{l} \- 24{x^2} + 6x + 9\\\ \- 24{x^2} - 12x\\\ \begin{array}{*{20}{c}} \+ &{}& \+ \end{array}\\\ \\_\\_\\_\\_\\_\\_\\_\\_\\_\\_\\_\\_\\_\\_\\_\\\ \begin{array}{*{20}{c}} {}&{}&\begin{array}{l} 18x + 9\\\ 18x + 9\\\ \begin{array}{*{20}{c}} \- & \- \end{array}\\\ \\_\\_\\_\\_\\_\\_\\_\\_\\_\\\ \begin{array}{*{20}{c}} {}&{}&0 \end{array} \end{array} \end{array} \end{array} \end{array} \end{array}}}\right. \\!\\!\\!\\!\overline{\,\,\,\vphantom 1{\begin{array}{l} 8{x^3} - 20{x^2} + 6x + 9\\\ 8{x^3} - 4{x^2}\\\ \begin{array}{*{20}{c}} \- & \+ \end{array}\\\ \\_\\_\\_\\_\\_\\_\\_\\_\\_\\_\\_\\_\\_\\_\\_\\_\\_\\\ \begin{array}{*{20}{c}} {}&\begin{array}{l} \- 24{x^2} + 6x + 9\\\ \- 24{x^2} - 12x\\\ \begin{array}{*{20}{c}} \+ &{}& \+ \end{array}\\\ \\_\\_\\_\\_\\_\\_\\_\\_\\_\\_\\_\\_\\_\\_\\_\\\ \begin{array}{*{20}{c}} {}&{}&\begin{array}{l} 18x + 9\\\ 18x + 9\\\ \begin{array}{*{20}{c}} \- & \- \end{array}\\\ \\_\\_\\_\\_\\_\\_\\_\\_\\_\\\ \begin{array}{*{20}{c}} {}&{}&0 \end{array} \end{array} \end{array} \end{array} \end{array} \end{array}}}} \limits^{\displaystyle\,\,\, {8{x^2} - 24x + 18}}$$ So, when we divide $p(x)=8{{x}^{3}}-20{{x}^{2}}+6x+9$ by $\left( x+\dfrac{1}{2} \right)$ we get the quotient as $8{{x}^{2}}-24x+18$ . Now, $Dividend=divisor\times quotient+remainder$ That is, $p(x)=\left( x+\dfrac{1}{2} \right)\times \left( 8{{x}^{2}}-24x+18 \right)+0$ $p(x)=\left( x+\dfrac{1}{2} \right)\times \left( 8{{x}^{2}}-24x+18 \right)$ Let us take 2 outside, we will get $=\left( x+\dfrac{1}{2} \right)\times 2\left( 4{{x}^{2}}-12x+9 \right)$ $=\left( x+\dfrac{1}{2} \right)\times 2\left( {{\left( 2x \right)}^{2}}-2\times 2\times 3x+{{3}^{2}} \right)$ ${{\left( 2x \right)}^{2}}-2\times 2\times 3x+{{3}^{2}}$ is of the form ${{(a+b)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$ . Therefore, we can write the above equation as $p(x)=\left( x+\dfrac{1}{2} \right)\times 2{{\left( 2x+3 \right)}^{2}}$ $=\left( \dfrac{2x+1}{2} \right)\times 2{{\left( 2x+3 \right)}^{2}}$ Let us cancel $2$ from numerator and denominator, we get $p(x)=\left( 2x+1 \right){{\left( 2x+3 \right)}^{2}}$ i.e. $p(x)=\left( 2x+1 \right)\left( 2x+3 \right)\left( 2x+3 \right)$ Now, we should substitute $p(x)=0$ . i.e. $\left( 2x+1 \right)\left( 2x+3 \right)\left( 2x+3 \right)=0$ $\Rightarrow \left( 2x+1 \right)=0,\left( 2x+3 \right)=0,\left( 2x+3 \right)=0$ Let us evaluate the value of $x$ . $\left( 2x+1 \right)=0\Rightarrow x=\dfrac{-1}{2}$ $\left( 2x+3 \right)=0\Rightarrow x=\dfrac{-3}{2}$ **Hence the value of $x$ are $\dfrac{-1}{2},\dfrac{-3}{2},\dfrac{-3}{2}$.** **Note:** In questions having degree 3 or more, the same procedure is followed starting from the trial and error method to obtain a factor and doing the long division method and simplifying. Note that the result obtained by doing the trial and error method must be 0 and the value of $x$ chosen for the same, say $a$ must be written in the form $x+a$ if $a$ is negative and $x-a$ if $a$ is positive.