Solveeit Logo

Question

Question: Solve the equation: \({{4}^{\sin 2x+2{{\cos }^{2}}x}}+{{4}^{1-\sin 2x+2{{\sin }^{2}}x}}=65\)...

Solve the equation: 4sin2x+2cos2x+41sin2x+2sin2x=65{{4}^{\sin 2x+2{{\cos }^{2}}x}}+{{4}^{1-\sin 2x+2{{\sin }^{2}}x}}=65

Explanation

Solution

Hint: Try to convert the 2nd term of LHS similar to the 1st term of LHS.
Use the formula of trigonometry involving sin and cos .
sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1
Then try to substitute some function of x to make the equation look simpler. Then solve it to get that substituted value and then go back to find x.

Complete step-by-step answer:
We are given the equation as:
4sin2x+2cos2x+41sin2x+2sin2x=65{{4}^{\sin 2x+2{{\cos }^{2}}x}}+{{4}^{1-\sin 2x+2{{\sin }^{2}}x}}=65
We know that
sin2x+cos2x=1 sin2x=1cos2x(i) \begin{aligned} & {{\sin }^{2}}x+{{\cos }^{2}}x=1 \\\ & {{\sin }^{2}}x=1-{{\cos }^{2}}x\,\,\,\,\,\cdot \cdot \cdot \text{(i)} \\\ \end{aligned}
Using equation (i) in LHS of our equation we get
4sin2x+2cos2x+41sin2x+2(1cos2x)=65 4sin2x+2cos2x+43sin2x2cos2x=65(ii) \begin{aligned} & {{4}^{\sin 2x+2{{\cos }^{2}}x}}+{{4}^{1-\sin 2x+2(1-{{\cos }^{2}}x)}}=65 \\\ & \Rightarrow {{4}^{\sin 2x+2{{\cos }^{2}}x}}+{{4}^{3-\sin 2x-2{{\cos }^{2}}x}}=65\,\,\,\,\,\,\,\cdot \cdot \cdot \text{(ii)} \\\ \end{aligned}
We know that for any real number a > 0 and m, n R\in \mathbb{R}
amn=aman(iii){{a}^{m-n}}=\dfrac{{{a}^{m}}}{{{a}^{n}}}\,\,\,\,\,\,\,\cdot \cdot \cdot \text{(iii)}
Using the equation (iii) in the equation (ii) we get
4sin2x+2cos2x+434sin2x+2cos2x=65{{4}^{\sin 2x+2{{\cos }^{2}}x}}+\dfrac{{{4}^{3}}}{{{4}^{\sin 2x+2{{\cos }^{2}}x}}}=65
We observe that the first term and denominator of the second term are the same. So substituting this value i.e. 4sin2x+2cos2x{{4}^{\sin 2x+2{{\cos }^{2}}x}}with some variable say t gives us
t+64t=65t+\dfrac{64}{t}=65
Multiplying it throughout the equation we get a quadratic equation.
t2+64=65t t265t+64=0(iv) \begin{aligned} & {{t}^{2}}+64=65t \\\ & \Rightarrow {{t}^{2}}-65t+64=0\,\,\,\,\,\cdot \cdot \cdot \text{(iv)} \\\ \end{aligned}
We see that above equation is quadratic equation which can be easily solved using quadratic formula which says that
x=b±b24ac2ax=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a} are the roots of the quadratic equation ax2+bx+c=0,a0a{{x}^{2}}+bx+c=0\,,\,a\ne 0
Using this quadratic formula to find t from equation (iv)
a = 1 , b = -65 , c = 64
t=(65)±(65)24(1)(64)2(1) t=65±42252562 t=65±39692=65±632 t=65+632ort=65632 t=64ort=1 \begin{aligned} & t=\dfrac{-(-65)\pm \sqrt{{{(-65)}^{2}}-4(1)(64)}}{2(1)} \\\ & \Rightarrow t=\dfrac{65\pm \sqrt{4225-256}}{2} \\\ & \Rightarrow t=\dfrac{65\pm \sqrt{3969}}{2}=\dfrac{65\pm 63}{2} \\\ & \Rightarrow t=\dfrac{65+63}{2}\,\,\,\,\,\,\,\,\,\,\,\,or\,\,\,\,\,\,\,\,\,\,\,t=\dfrac{65-63}{2} \\\ & \Rightarrow t=64\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,or\,\,\,\,\,\,\,\,\,\,t=1 \\\ \end{aligned}
Back substituting t with 4sin2x+2cos2x{{4}^{\sin 2x+2{{\cos }^{2}}x}} and solving for both value of t. First taking t = 64
4sin2x+2cos2x=64=43 sin2x+2cos2x=3(v) \begin{aligned} & {{4}^{\sin 2x+2{{\cos }^{2}}x}}=64={{4}^{3}} \\\ & \Rightarrow \sin 2x+2{{\cos }^{2}}x=3\,\,\,\,\,\,\cdot \cdot \cdot \text{(v)} \\\ \end{aligned}
We know that
1sin2x1(vi) 1cosx1 0cos2x1 02cos2x2(vii) \begin{aligned} & -1\le \sin 2x\le 1\,\,\,\,\,\,\,\cdot \cdot \cdot \text{(vi)} \\\ & -1\le \cos x\le 1 \\\ & \Rightarrow 0\le {{\cos }^{2}}x\le 1 \\\ & \Rightarrow 0\le 2{{\cos }^{2}}x\le 2\,\,\,\,\,\,\,\,\,\cdot \cdot \cdot \text{(vii)} \\\ \end{aligned}
From equation (vi) and (vii) we see that for equation (v) to be true both sin2x\sin 2xand 2cos2x2{{\cos }^{2}}xhas to attain their maximum value. That is
2cos2x=2andsin2x=1 cos2x=1 x=2nπ \begin{aligned} & 2{{\cos }^{2}}x=2\,\,\,\,\,\,\,\text{and}\,\,\,\,\,\,\,\,\sin 2x=1 \\\ & \Rightarrow {{\cos }^{2}}x=1 \\\ & \Rightarrow x=2n\pi \,\,\, \\\ \end{aligned}
But we see that x=2nπx=2n\pi do not satisfy sin2x=1\sin 2x=1because sin4nπ=0\sin 4n\pi =0
So it cannot be equal to 64.
Now coming to t = 1
4sin2x+2cos2x=1=40 sin2x+2cos2x=0 2sinxcosx+2cos2x=0[sin2x=2sinxcosx] 2cosx(sinx+cosx)=0 cosx=0orsinx+cosx=0 x=(2n+1)π2orsinx=cosx tanx=1[Dividing both side by cosx] x=nπ+3π4 \begin{aligned} & {{4}^{\sin 2x+2{{\cos }^{2}}x}}=1={{4}^{0}} \\\ & \Rightarrow \sin 2x+2{{\cos }^{2}}x=0 \\\ & \Rightarrow 2\sin x\cos x+2{{\cos }^{2}}x=0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,[\because \sin 2x=2\sin x\cos x] \\\ & \Rightarrow 2\cos x\left( \sin x+\cos x \right)=0 \\\ & \Rightarrow \cos x=0\,\,\,\,\,\,\,\,\,or\,\,\,\,\,\,\,\,\,\sin x+\cos x=0 \\\ & \Rightarrow x=\left( 2n+1 \right)\dfrac{\pi }{2}\,\,\,\,\,\,or\,\,\,\,\,\,\sin x=-\cos x \\\ & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\Rightarrow \tan x=-1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,[\text{Dividing both side by }\cos x] \\\ & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\Rightarrow x=n\pi +\dfrac{3\pi }{4} \\\ \end{aligned}
So,
x=(2n+1)π2x=\left( 2n+1 \right)\dfrac{\pi }{2}\, and x=nπ+3π4x=n\pi +\dfrac{3\pi }{4}for nZn\in \mathbb{Z} is the general solution of the given equation.

Note: This is a very tricky question and needs to be solved in this way otherwise the answer may get long and even may not be correct. The end solution requires solving the general trigonometric equation.