Solveeit Logo

Question

Question: Solve the differentiation \(\dfrac{d}{dx}(\dfrac{{{\cot }^{2}}x-1}{{{\cot }^{2}}x+1})=\)....

Solve the differentiation ddx(cot2x1cot2x+1)=\dfrac{d}{dx}(\dfrac{{{\cot }^{2}}x-1}{{{\cot }^{2}}x+1})=.

Explanation

Solution

We will use a simple concept of trigonometry and convert cotx\cot x in terms of sinx\sin x and cosx\cos x to make the question easier than before. We have to use formula, cotx=cosxsinx\cot x=\dfrac{\cos x}{\sin x} then, differentiate and easily get the answer.

Complete step by step solution:
If the question of differentiation contains trigonometric terms, then first of all we have to simplify the trigonometric term using trigonometric formula and trigonometric identities which make the question easier.
When we use this formula cotx=cosxsinx\cot x=\dfrac{\cos x}{\sin x} to convert cotx\cot x in terms of sinx\sin x and cosx\cos x.
We use this formula in the denominator of the question and convert into cosec2x\cos e{{c}^{2}}x and then convert in terms of sinx\sin x.
cosec2x=1+cot2x\cos e{{c}^{2}}x=1+{{\cot }^{2}}x
We have a formula to convert cosecx\cos ecx into sinx\sin x
cosecx=1sinx\cos ecx=\dfrac{1}{\sin x}
After putting the value of cotx=cosxsinx\cot x=\dfrac{\cos x}{\sin x} and cosecx=1sinx\cos ecx=\dfrac{1}{\sin x} then, it can be written as:
cot2x1cot2x+1=cos2xsin2x1cosec2x=cos2xsin2x11sin2x\dfrac{{{\cot }^{2}}x-1}{{{\cot }^{2}}x+1}=\dfrac{\dfrac{{{\cos }^{2}}x}{{{\sin }^{2}}x}-1}{\cos e{{c}^{2}}x}=\dfrac{\dfrac{{{\cos }^{2}}x}{{{\sin }^{2}}x}-1}{\dfrac{1}{{{\sin }^{2}}x}}
After taking the L.C.M in numerator and denominator, we get
cos2xsin2xsin2x1sin2x\dfrac{\dfrac{{{\cos }^{2}}x-{{\sin }^{2}}x}{{{\sin }^{2}}x}}{\dfrac{1}{{{\sin }^{2}}x}}
Using this property
abcd=ab×dc\dfrac{\dfrac{a}{b}}{\dfrac{c}{d}}=\dfrac{a}{b}\times \dfrac{d}{c}
It can be written as:
cos2xsin2xsin2x×sin2x\dfrac{{{\cos }^{2}}x-{{\sin }^{2}}x}{{{\sin }^{2}}x}\times {{\sin }^{2}}x
After dividing by sin2x{{\sin }^{2}}x we get
cos2xsin2x{{\cos }^{2}}x-{{\sin }^{2}}x
We have to using this formula
cos2xsin2x=cos(x)cos(x)sin(x)sin(x){{\cos }^{2}}x-{{\sin }^{2}}x=\cos (x)\cos (x)-\sin (x)\sin (x)
Then we use formula of trigonometric
cosAcosBsinAsinB=cos(A+B)\cos A\cos B-\sin A\sin B=\cos (A+B)
After using this formula, we get
cos2xsin2x=cos2x{{\cos }^{2}}x-{{\sin }^{2}}x=\cos 2x
Hence, we get
cot2x1cot2x+1=cos2x\dfrac{{{\cot }^{2}}x-1}{{{\cot }^{2}}x+1}=\cos 2x
Then ddx(cot2x1cot2x+1)\dfrac{d}{dx}(\dfrac{{{\cot }^{2}}x-1}{{{\cot }^{2}}x+1}) written as ddx(cos2x)\dfrac{d}{dx}(\cos 2x)
We have to use the formula of differentiation of cosx\cos x with respect to x
ddx(cosax)=asinax\dfrac{d}{dx}\left( \cos ax \right)=-a\sin ax
After using the above formula, we get
ddx(cos2x)=2sin2x\dfrac{d}{dx}\left( \cos 2x \right)=-2\sin 2x

Hence, ddx(cot2x1cot2x+1)=2sin2x\dfrac{d}{dx}(\dfrac{{{\cot }^{2}}x-1}{{{\cot }^{2}}x+1})=-2\sin 2x.

Note:
We should keep in mind all the trigonometric formulas and identities to solve any trigonometric function.
We use this trigonometric formula in above solutions are:
cotx=cosxsinx\cot x=\dfrac{\cos x}{\sin x}, cosec2x=1+cot2x\cos e{{c}^{2}}x=1+{{\cot }^{2}}x, cosecx=1sinx\cos ecx=\dfrac{1}{\sin x}, cos2xsin2x=cos2x{{\cos }^{2}}x-{{\sin }^{2}}x=\cos 2x
We should keep in mind all the formulas of differentiation and use carefully to solve the answer.
We use this differentiation formula in above solution are:
ddx(cosax)=asinax\dfrac{d}{dx}\left( \cos ax \right)=-a\sin ax.