Solveeit Logo

Question

Mathematics Question on Differential equations

Solve the differential equation yexydx=(xexy+y2)dy,  (y0)ye^{\frac xy}dx=(xe^{\frac xy}+y^2)dy, \ \ (y≠0)

Answer

yexydx=(xexy+y2)dy,  (y0)ye^{\frac xy}dx=(xe^{\frac xy}+y^2)dy, \ \ (y≠0)

yexydxdy=xexy+y2⇒ye^{\frac xy} \frac {dx}{dy}=xe^{\frac xy}+y^2

exy[y.dxdyx]=y2⇒e^{\frac xy}[y.\frac {dx}{dy}-x]=y^2

exy.[y.dxdyx]y2=1⇒e^{\frac xy}.\frac {[y.\frac {dx}{dy}-x]}{y^2}=1 ...(1)

Let exy=z.Let\ e^{\frac xy}=z.

Differentiating it with respect to y,we get:

ddy(exy)=dzdy\frac {d}{dy}(e^{\frac xy})=\frac {dz}{dy}

exy.ddy(xy)=dzdy⇒e^{\frac xy}.\frac {d}{dy}(\frac xy)=\frac {dz}{dy}

exy.[y.dxdyxy2]=dzdy⇒e^{\frac xy}.[\frac {y.\frac {dx}{dy}-x}{y^2}]=\frac {dz}{dy} ...(2)

From equation (1) and equation (2), we get:

dzdy=1\frac {dz}{dy}=1

dz=dy⇒dz=dy

Integrating both sides, we get:

z=y+Cz=y+C

exy=y+C⇒e^{\frac xy}=y+C