Question
Mathematics Question on Differential equations
Solve the differential equation yeyxdx=(xeyx+y2)dy, (y=0)
Answer
yeyxdx=(xeyx+y2)dy, (y=0)
⇒yeyxdydx=xeyx+y2
⇒eyx[y.dydx−x]=y2
⇒eyx.y2[y.dydx−x]=1 ...(1)
Let eyx=z.
Differentiating it with respect to y,we get:
dyd(eyx)=dydz
⇒eyx.dyd(yx)=dydz
⇒eyx.[y2y.dydx−x]=dydz ...(2)
From equation (1) and equation (2), we get:
dydz=1
⇒dz=dy
Integrating both sides, we get:
z=y+C
⇒eyx=y+C