Solveeit Logo

Question

Question: Solve the differential equation \[x\dfrac{dy}{dx}-y=2{{x}^{2}}\operatorname{cosec}2x\] (a) y = c...

Solve the differential equation
xdydxy=2x2cosec2xx\dfrac{dy}{dx}-y=2{{x}^{2}}\operatorname{cosec}2x
(a) y = cx + x ln tan x
(b) y = cx + x ln cot x
(c) y = cx – y ln tan x
(d) y = cx – y ln cot x

Explanation

Solution

Hint: First of all, divide the whole equation by x. Now, it is in the form dydx+P(x)y=Q(x)\dfrac{dy}{dx}+P\left( x \right)y=Q\left( x \right). Solve it by solving y(I.F)=Q(I.F)dxy\left( I.F \right)=\int{Q\left( I.F \right)dx} where I.F=ePdxI.F={{e}^{\int{Pdx}}}. So, find the I.F and substitute in the above equation and solve it.

Complete step-by-step answer:
We have to solve the differential equation.
xdydxy=2x2cosec2xx\dfrac{dy}{dx}-y=2{{x}^{2}}\operatorname{cosec}2x
Let us consider the differential equation given in the question.
xdydxy=2x2cosec2xx\dfrac{dy}{dx}-y=2{{x}^{2}}\operatorname{cosec}2x
By dividing x on both the sides of the above equation, we get,
dydxyx=2xcosec2x\dfrac{dy}{dx}-\dfrac{y}{x}=2x\operatorname{cosec}2x
Now, the above equation is of the form dydx+Py=Q\dfrac{dy}{dx}+Py=Q where P and Q are functions of x. By comparison, we get, P=1x and Q=2xcosec2xP=\dfrac{-1}{x}\text{ and }Q=2x\operatorname{cosec}2x.
To solve this equation, we will first find its integrating factor which is:
I.F=ePdxI.F={{e}^{\int{Pdx}}}
By substituting P=1xP=\dfrac{-1}{x}, we get,
I.F=e1xdxI.F={{e}^{\int{\dfrac{-1}{x}}dx}}
We know that
1xdx=lnx\int{\dfrac{1}{x}dx=\ln x}
So, we get,
I.F=elnxI.F={{e}^{-\ln x}}
We know that,
alogb=bloga{{a}^{\log b}}={{b}^{\log a}}
So, we get,
I.F=xlneI.F={{x}^{-\ln e}}
We know that ln e = 1, so we get,
I.F=x1=1xI.F={{x}^{-1}}=\dfrac{1}{x}
Now, the equation is solved by using
y(I.F)=Q(I.F)dxy\left( I.F \right)=\int{Q\left( I.F \right)dx}
By substituting the value of I.F=1x and Q=2xcosec2xI.F=\dfrac{1}{x}\text{ and }Q=2x\operatorname{cosec}2x, we get,
yx=2xcosec2xxdx\dfrac{y}{x}=\int{\dfrac{2x\operatorname{cosec}2x}{x}dx}
yx=2cosec2x dx\dfrac{y}{x}=\int{2\operatorname{cosec}2x\text{ }dx}
yx=2cosec2x dx.....(i)\dfrac{y}{x}=2\int{\operatorname{cosec}2x\text{ }dx}.....\left( i \right)
Now, let us find the value of cosec2x dx\int{\operatorname{cosec}2x\text{ }dx}.
We know that cosecθ=1sinθ\operatorname{cosec}\theta =\dfrac{1}{\sin \theta }. By using this, we get,
I=cosec2x dx=1sin2xdxI=\int{\operatorname{cosec}2x\text{ }dx}=\int{\dfrac{1}{\sin 2x}}dx
We know that sin2θ=2sinθcosθ\sin 2\theta =2\sin \theta \cos \theta . By using this, we get,
I=12sinxcosxdxI=\int{\dfrac{1}{2\sin x\cos x}}dx
By multiplying cos x on both numerator and denominator of the above equation on the RHS, we get,
I=12sinxcosx×cosxcosxdxI=\int{\dfrac{1}{2\sin x\cos x}}\times \dfrac{\cos x}{\cos x}dx
We know that, sinθcosθ=tanθ and 1cosθ=secθ\dfrac{\sin \theta }{\cos \theta }=\tan \theta \text{ and }\dfrac{1}{\cos \theta }=\sec \theta . By using this, we get,
I=sec2xdx2tanx....(ii)I=\int{\dfrac{{{\sec }^{2}}xdx}{2\tan x}....\left( ii \right)}
Let us take tan x = t. By differentiating both the sides, we get,
sec2xdx=dt{{\sec }^{2}}xdx=dt
So, by substituting x in terms of t in equation (ii), we get,
I=dt2tI=\int{\dfrac{dt}{2t}}
We know that 1xdx=lnx+c\int{\dfrac{1}{x}dx=\ln x+c}. By using this, we get,
I=lnt2+cI=\dfrac{\ln t}{2}+c
By substituting t = tan x, we get,
I=ln(tanx)2+cI=\dfrac{\ln \left( \tan x \right)}{2}+c
So, we get,
cosec2xdx=ln(tanx)2+c\int{\operatorname{cosec}2xdx=\dfrac{\ln \left( \tan x \right)}{2}}+c
Now, by substituting the value of cosec2x dx\int{\operatorname{cosec}2x}\text{ }dx in equation (i), we get,
yx=2cosec2x dx\dfrac{y}{x}=2\int{\operatorname{cosec}2x}\text{ }dx
yx=2[ln(tanx)2+c]\dfrac{y}{x}=2\left[ \dfrac{\ln \left( \tan x \right)}{2}+c \right]
yx=ln(tanx)+c\dfrac{y}{x}=\ln \left( \tan x \right)+c
By multiplying x on both the sides, we get,
y=cx+xln(tanx)y=cx+x\ln \left( \tan x \right)
Therefore, option (a) is the right answer.

Note: In these types of questions, first of all, it is very important to identify the form and convert it into the standard linear differential equation of the first order that is in dydx+Py=Q\dfrac{dy}{dx}+Py=Q like we have first divided the whole equation by x to convert it into this form. Also, remember that I.F or integrating factor is ePdx{{e}^{\int{Pdx}}} and not eQdx{{e}^{\int{Qdx}}}. So, always compare the values properly and then only write them.