Solveeit Logo

Question

Question: Solve the differential equation \[({x^2} + {y^2})dx - 2xydy = 0\]....

Solve the differential equation (x2+y2)dx2xydy=0({x^2} + {y^2})dx - 2xydy = 0.

Explanation

Solution

Hint: Determine dydx\dfrac{{dy}}{{dx}} from (x2+y2)dx2xydy=0({x^2} + {y^2})dx - 2xydy = 0 and observe it is a function of yx\dfrac{y}{x}. Substitute another variable in terms of yx\dfrac{y}{x} and solve the differential equation and finally convert it in terms of y and x.

Complete step-by-step answer:
A differential equation is an equation that relates one or more functions and their derivatives.
We are given the expression (x2+y2)dx2xydy=0({x^2} + {y^2})dx - 2xydy = 0 and we need to solve for this differential equation.
As a first step, we need to find dydx\dfrac{{dy}}{{dx}} from (x2+y2)dx2xydy=0({x^2} + {y^2})dx - 2xydy = 0.
(x2+y2)dx2xydy=0({x^2} + {y^2})dx - 2xydy = 0
Taking -2xydy to the right-hand side of the equation, we get:
(x2+y2)dx=2xydy({x^2} + {y^2})dx = 2xydy
Dividing both sides of the equation by dx, we obtain as follows:
x2+y2=2xydydx{x^2} + {y^2} = 2xy\dfrac{{dy}}{{dx}}
Solving for dydx\dfrac{{dy}}{{dx}} in terms of x and y, we get:
dydx=x2+y22xy\dfrac{{dy}}{{dx}} = \dfrac{{{x^2} + {y^2}}}{{2xy}}

dydx=x2+y22xy................(1)\dfrac{{dy}}{{dx}} = \dfrac{{{x^2} + {y^2}}}{{2xy}}................(1)
Let F(x,y)=x2+y22xyF(x,y) = \dfrac{{{x^2} + {y^2}}}{{2xy}}, we now find F(λx,λy)F(\lambda x,\lambda y).
F(λx,λy)=(λx)2+(λy)22(λx)(λy)F(\lambda x,\lambda y) = \dfrac{{{{(\lambda x)}^2} + {{(\lambda y)}^2}}}{{2(\lambda x)(\lambda y)}}
F(λx,λy)=λ2x2+λ2y22λ2xyF(\lambda x,\lambda y) = \dfrac{{{\lambda ^2}{x^2} + {\lambda ^2}{y^2}}}{{2{\lambda ^2}xy}}
F(λx,λy)=x2+y22xyF(\lambda x,\lambda y) = \dfrac{{{x^2} + {y^2}}}{{2xy}}
F(λx,λy)=F(x,y)F(\lambda x,\lambda y) = F(x,y)
Hence, F(x, y) is a homogeneous differential equation.
Therefore, we make the substitution y=ux.
u=yx.............(2)u = \dfrac{y}{x}.............(2)
y=uxy = ux
Differentiating both sides with respect to x, we get as follows:
dydx=xdudx+u.............(3)\dfrac{{dy}}{{dx}} = x\dfrac{{du}}{{dx}} + u.............(3)
From equation (1), we have:
dydx=x2y+y2x\dfrac{{dy}}{{dx}} = \dfrac{x}{{2y}} + \dfrac{y}{{2x}}
Substituting equation (2) and equation (3) into the above equation, we have:
xdudx+u=12u+u2x\dfrac{{du}}{{dx}} + u = \dfrac{1}{{2u}} + \dfrac{u}{2}
Taking u to the right-hand side of the equation and simplifying, we have:
xdudx=12u+u2ux\dfrac{{du}}{{dx}} = \dfrac{1}{{2u}} + \dfrac{u}{2} - u
xdudx=12uu2x\dfrac{{du}}{{dx}} = \dfrac{1}{{2u}} - \dfrac{u}{2}
Simplifying the fractions, we have:
xdudx=1u22ux\dfrac{{du}}{{dx}} = \dfrac{{1 - {u^2}}}{{2u}}
Now, we can solve this differential equation using separation of variables method.
Taking all terms with u to the left-hand and taking all terms with x to the right-hand side, we have:
2u1u2du=dxx\dfrac{{2u}}{{1 - {u^2}}}du = \dfrac{{dx}}{x}
Integrating both sides, we have:
2u1u2du=dxx\int {\dfrac{{2u}}{{1 - {u^2}}}du} = \int {\dfrac{{dx}}{x}}
Let 1u2=t1 - {u^2} = t.
1u2=t1 - {u^2} = t
Differentiating both sides we have:
2udu=dt- 2udu = dt
Then the integral is given as follows:
1tdt=dxx- \int {\dfrac{1}{t}dt} = \int {\dfrac{{dx}}{x}}
Integration of 1x\dfrac{1}{x} is logx\log \left| x \right|.
logt=logx+C- \log \left| t \right| = \log \left| x \right| + C
Simplifying, we get:
logtlogx=C- \log \left| t \right| - \log \left| x \right| = C
logxt=C\log \left| {xt} \right| = - C
We know that 1u2=t1 - {u^2} = t.
logx(1u2)=C\log \left| {x(1 - {u^2})} \right| = - C
We know that u=yxu = \dfrac{y}{x}, then, we have:
logx(1(yx)2)=C\log \left| {x\left( {1 - {{\left( {\dfrac{y}{x}} \right)}^2}} \right)} \right| = - C
Simplifying, we get:
logx(x2yx22)=C\log \left| {x\left( {{{\dfrac{{{x^2} - y}}{{{x^2}}}}^2}} \right)} \right| = - C
logx2yx2=C\log \left| {{{\dfrac{{{x^2} - y}}{x}}^2}} \right| = - C
Let C=logc - C = \log c, then we have:
logx2yx2=logc\log \left| {{{\dfrac{{{x^2} - y}}{x}}^2}} \right| = \log c
x2yx2=c\left| {{{\dfrac{{{x^2} - y}}{x}}^2}} \right| = c
x2y2=cx\left| {{x^2} - {y^2}} \right| = c|x|
Hence, the solution to the given differential equation is x2y2=cx\left| {{x^2} - {y^2}} \right| = c|x|.

Note: If you use the integration of 1x\dfrac{1}{x} as just logx\log x, you will end up in a wrong answer. Integration of 1x\dfrac{1}{x} is logx\log \left| x \right|.