Solveeit Logo

Question

Question: Solve the differential equation: \(\left( {x{y^2} + x} \right)dx + \left( {{x^2}y + y} \right)dy =...

Solve the differential equation:
(xy2+x)dx+(x2y+y)dy=0\left( {x{y^2} + x} \right)dx + \left( {{x^2}y + y} \right)dy = 0.

Explanation

Solution

Hint: Separate the terms with xx variable on one side and terms with yy variable on other side. And then solve the equation integrating both sides.

The given differential equation is (xy2+x)dx+(x2y+y)dy=0\left( {x{y^2} + x} \right)dx + \left( {{x^2}y + y} \right)dy = 0. This can be simplified as:

x(y2+1)dx=y(x2+1)dy, x(x2+1)dx=y(y2+1)dy, 2x(x2+1)dx=2y(y2+1)dy  \Rightarrow x\left( {{y^2} + 1} \right)dx = - y\left( {{x^2} + 1} \right)dy, \\\ \Rightarrow \dfrac{x}{{\left( {{x^2} + 1} \right)}}dx = - \dfrac{y}{{\left( {{y^2} + 1} \right)}}dy, \\\ \Rightarrow \dfrac{{2x}}{{\left( {{x^2} + 1} \right)}}dx = - \dfrac{{2y}}{{\left( {{y^2} + 1} \right)}}dy \\\

Integrating both sides, we’ll get:
2x(x2+1)dx=2y(y2+1)dy,\Rightarrow \int {\dfrac{{2x}}{{\left( {{x^2} + 1} \right)}}dx} = - \int {\dfrac{{2y}}{{\left( {{y^2} + 1} \right)}}dy,}
We know that 2x(x2+1)dx=logx2+1+C\int {\dfrac{{2x}}{{\left( {{x^2} + 1} \right)}}dx} = \log \left| {{x^2} + 1} \right| + C, Using this in the above equation, we’ll get:

logx2+1=logy2+1+C, logx2+1+logy2+1=C, log(x2+1y2+1)=C, (x2+1)(y2+1)=eC, (x2+1)(y2+1)=±eC  \Rightarrow \log \left| {{x^2} + 1} \right| = - \log \left| {{y^2} + 1} \right| + C, \\\ \Rightarrow \log \left| {{x^2} + 1} \right| + \log \left| {{y^2} + 1} \right| = C, \\\ \Rightarrow \log \left( {\left| {{x^2} + 1} \right|\left| {{y^2} + 1} \right|} \right) = C, \\\ \Rightarrow \left| {\left( {{x^2} + 1} \right)\left( {{y^2} + 1} \right)} \right| = {e^C}, \\\ \Rightarrow \left( {{x^2} + 1} \right)\left( {{y^2} + 1} \right) = \pm {e^C} \\\

Thus the solution of the differential equation is (x2+1)(y2+1)=±eC\left( {{x^2} + 1} \right)\left( {{y^2} + 1} \right) = \pm {e^C}

Note: The method used in solving the above differential equation is called variable separation method i.e. keeping the terms containing the same variable on one side and terms having other variables on the other side. And then integrating on both the sides.