Solveeit Logo

Question

Question: Solve the differential equation \(\left( 1+{{x}^{2}} \right)\dfrac{dy}{dx}+y={{e}^{{{\tan }^{-1}}x}}...

Solve the differential equation (1+x2)dydx+y=etan1x\left( 1+{{x}^{2}} \right)\dfrac{dy}{dx}+y={{e}^{{{\tan }^{-1}}x}}.

Explanation

Solution

First convert the equation to the form dydx+p(x)y=g(x)\dfrac{dy}{dx}+p\left( x \right)y=g\left( x \right) and find the integration factor of the differential equation using IF=ep(x)dxIF={{e}^{\int{p\left( x \right)dx}}} . Then the solution of the differential equation is y(IF)=(IF)g(x)dxy\left( IF \right)=\int{\left( IF \right)g\left( x \right)dx} . just solve the integral on the right-hand side of the equation and report the answer. To solve integral, the method of substitution is to be used, by taking t=tan1xt={{\tan }^{-1}}x.

Complete step by step answer:
Let us start the solution to the above question by converting the equation to the form dydx+p(x)y=g(x)\dfrac{dy}{dx}+p\left( x \right)y=g\left( x \right) .
(1+x2)dydx+y=etan1x\left( 1+{{x}^{2}} \right)\dfrac{dy}{dx}+y={{e}^{{{\tan }^{-1}}x}}
dydx+y1+x2=etan1x1+x2\Rightarrow \dfrac{dy}{dx}+\dfrac{y}{1+{{x}^{2}}}=\dfrac{{{e}^{{{\tan }^{-1}}x}}}{1+{{x}^{2}}}
Now, we know that the integration factor of the differential equation dydx+p(x)y=g(x)\dfrac{dy}{dx}+p\left( x \right)y=g\left( x \right) is IF=ep(x)dxIF={{e}^{\int{p\left( x \right)dx}}} . For our equation p(x)=11+x2p\left( x \right)=\dfrac{1}{1+{{x}^{2}}} . So, the IF of our differential equation is:
IF=edx1+x2=etan1xIF={{e}^{\int{\dfrac{dx}{1+{{x}^{2}}}}}}={{e}^{{{\tan }^{-1}}x}}
So, the solution to the differential equation dydx+p(x)y=g(x)\dfrac{dy}{dx}+p\left( x \right)y=g\left( x \right) is: y(IF)=(IF)g(x)dxy\left( IF \right)=\int{\left( IF \right)g\left( x \right)dx} .
So, the solution to our differential equation is:
yetan1x=etan1x×etan1x1+x2dxy{{e}^{{{\tan }^{-1}}x}}=\int{{{e}^{{{\tan }^{-1}}x}}\times \dfrac{{{e}^{{{\tan }^{-1}}x}}}{1+{{x}^{2}}}dx}
yetan1x=e2tan1x1+x2dx\Rightarrow y{{e}^{{{\tan }^{-1}}x}}=\int{\dfrac{{{e}^{2{{\tan }^{-1}}x}}}{1+{{x}^{2}}}dx}
Now, to solve the integral, we will let tan1x{{\tan }^{-1}}x to be t.
t=tan1xt={{\tan }^{-1}}x
Now, we will differentiate both sides of the equation. On doing so, we get
dtdx=d(tan1x)dx\dfrac{dt}{dx}=\dfrac{d({{\tan }^{-1}}x)}{dx}
dtdx=11+x2\Rightarrow \dfrac{dt}{dx}=\dfrac{1}{1+{{x}^{2}}}
dt=dx1+x2\Rightarrow dt=\dfrac{dx}{1+{{x}^{2}}}
Now, we will substitute t and dt in our integral. On doing so, we get
yetan1x=e2tdty{{e}^{{{\tan }^{-1}}x}}=\int{{{e}^{2t}}dt}
Now, we will use the identity that ekxdx=ekxk+c\int{{{e}^{kx}}dx}=\dfrac{{{e}^{kx}}}{k}+c , where k is constant.
yetan1x=e2t2+cy{{e}^{{{\tan }^{-1}}x}}=\dfrac{{{e}^{2t}}}{2}+c
Now, we will again substitute the value of t according to our assumption. On doing so, we get
yetan1x=e2tan1x2+cy{{e}^{{{\tan }^{-1}}x}}=\dfrac{{{e}^{2{{\tan }^{-1}}x}}}{2}+c

Hence, the answer to the above question is yetan1x=e2tan1x2+cy{{e}^{{{\tan }^{-1}}x}}=\dfrac{{{e}^{2{{\tan }^{-1}}x}}}{2}+c.

Note: Remember that integrating factor and the above used method is only valid for the differential equations which can be written in the form of dydx+p(x)y=g(x)\dfrac{dy}{dx}+p\left( x \right)y=g\left( x \right) . Also, don’t forget the constant of integration or to substitute the assumed variables while reporting the final answer. Don’t make the mistake and try to substitute t=11+x2t=\dfrac{1}{1+{{x}^{2}}} to solve the integral, as it won’t give any useful results.