Solveeit Logo

Question

Mathematics Question on Differential equations

Solve the differential equation [e2xxyx]dxdy=1(x0)[\frac{e^{-2\sqrt{x}}}{\sqrt{x}}-\frac{y}{\sqrt{x}}]\frac{dx}{dy}=1(x≠0)

Answer

The correct answer is: ye2x=2x+Cye^{2\sqrt{x}}=2\sqrt{x}+C
[e2xxyx]dxdy=1[\frac{e^{-2\sqrt{x}}}{\sqrt{x}}-\frac{y}{\sqrt{x}}]\frac{dx}{dy}=1
    dydx=e2xxyx\implies \frac{dy}{dx}=\frac{e^{-2\sqrt{x}}}{\sqrt{x}}-\frac{y}{\sqrt{x}}
dydx+yx=e2xx⇒\frac{dy}{dx}+\frac{y}{\sqrt{x}}=\frac{e^{-2\sqrt{x}}}{\sqrt{x}}
This equation is a linear differential equation of the form
dydx+py=Q\frac{dy}{dx}+py=Q,where p=1xp=\frac{1}{\sqrt{x}} and Q=e2xx.Q=\frac{e^{-2\sqrt{x}}}{\sqrt{x}}.
Now,I.F.=epdx=e1xdx=e2xI.F.=e^{∫pdx}=e^{∫\frac{1}{\sqrt{x}}dx}=e^{2\sqrt{x}}
The general solution of the given differential equation is given by,
y(I.F.)=(Q×I.F.)dx+Cy(I.F.)=∫(Q×I.F.)dx+C
ye2x=(e2xx×e2x)dx+C⇒ye^{2\sqrt{x}}=∫(\frac{e^{-2\sqrt{x}}}{\sqrt{x}}×e^{2\sqrt{x}})dx+C
ye2x=1xdx+C⇒ye^{2\sqrt{x}}=∫\frac{1}{\sqrt{x}}dx+C
ye2x=2x+C⇒ye^{2\sqrt{x}}=2\sqrt{x}+C