Solveeit Logo

Question

Question: Solve the differential equation \(\dfrac{dy}{dx}=\tan \left( x+y \right)\)...

Solve the differential equation dydx=tan(x+y)\dfrac{dy}{dx}=\tan \left( x+y \right)

Explanation

Solution

- Hint:This differential equation can be reduced to a variable separable form by putting a particular term equal to a variable. Some formulas and identities used in this question are: -
sec2t=1+tan2t; dxx=lnx+c{{\sec }^{2}}t=1+{{\tan }^{2}}t;\ \int{\dfrac{dx}{x}=\ln x+c}
ddx(tant)=sec2tdt; dx1+x2=tan1x+c\dfrac{d}{dx}\left( \tan t \right)={{\sec }^{2}}tdt;\ \int{\dfrac{dx}{1+{{x}^{2}}}={{\tan }^{-1}}x+c}

Complete step-by-step solution -

The differential equation given in the question is not of the form f(x)dx=g(y)dyf\left( x \right)dx=g\left( y \right)dy. So, we cannot just cross multiply terms. To make it of the form f(x)dx=g(y)dyf\left( x \right)dx=g\left( y \right)dyi.e. of the variable separable from, we have to make necessary i.e. of the variable separable from, we have to make necessary substitutions. Thus, now we will start converting into a variable separable form; in the question, it is given that,
dydx=tan(x+y)\dfrac{dy}{dx}=\tan \left( x+y \right) …………………………….(i)
Now, we will substitute (x+y)\left( x+y \right) to t i.e.,
x+y=tx+y=t ……………………………………………(ii)
We will differentiate both sides of the equation with respect to x i.e.,
dxdx+dydx=dtdx\dfrac{dx}{dx}+\dfrac{dy}{dx}=\dfrac{dt}{dx}
1+dydx=dtdx\Rightarrow 1+\dfrac{dy}{dx}=\dfrac{dt}{dx}
dydx=dtdx1\Rightarrow \dfrac{dy}{dx}=\dfrac{dt}{dx}-1 …………………………………………(iii)
Now we will put the value of (x+y)\left( x+y \right)and dydx\dfrac{dy}{dx} from equation (ii)and equation (iii) to equation (i). After doing this we will get,
dtdx1=tant\dfrac{dt}{dx}-1=\tan t
dtdx=tant+1\dfrac{dt}{dx}=\tan t+1 …………………………………………(iv)
Now equation (iv) is variable separable form so we can simply cross multiply the equation. After doing this, we will get,
dt1+tant=dx\dfrac{dt}{1+\tan t}=dx ………………………………………….(v)
Now, we will integrate the equation (v);
dt1+tant=dx+c\int{\dfrac{dt}{1+\tan t}}=\int{dx}+c ………………………………….(vi)
Now, we will put tant=p\tan t=p. We will differentiate both sides. After doing this, we will get: -
sec2tdt=dp{{\sec }^{2}}tdt=dp
dt=dpsec2t\Rightarrow dt=\dfrac{dp}{{{\sec }^{2}}t}
dt=dp1+tan2t\Rightarrow dt=\dfrac{dp}{1+{{\tan }^{2}}t} [from the identity in the hint]
dt=dp1+p2\Rightarrow dt=\dfrac{dp}{1+{{p}^{2}}}
Putting the values in (vi), we get
dt(1+p2)(1+p)=dx+c\int{\dfrac{dt}{\left( 1+{{p}^{2}} \right)\left( 1+p \right)}}=\int{dx}+c
Now, we will separately integrate the term on LHS:
dt(1+p2)(1+p)\int{\dfrac{dt}{\left( 1+{{p}^{2}} \right)\left( 1+p \right)}}
By using partial fraction, we get
dp(1+p2)(1+p)=Adp1+p+(Bp+c)dp1+p2\int{\dfrac{dp}{\left( 1+{{p}^{2}} \right)\left( 1+p \right)}}=\int{\dfrac{Adp}{1+p}+\int{\dfrac{\left( Bp+c \right)dp}{1+{{p}^{2}}}}} ……………………………(vii)
Now we have to find the values of A, B and C let us see, how this can be done: -
dp(1+p2)(1+p)=(A+Ap2+Bp+C+Bp2+Cp)dp(1+p)(1+p2)\int{\dfrac{dp}{\left( 1+{{p}^{2}} \right)\left( 1+p \right)}}=\int{\dfrac{\left( A+A{{p}^{2}}+Bp+C+B{{p}^{2}}+Cp \right)dp}{\left( 1+p \right)\left( 1+{{p}^{2}} \right)}}
So, we get; A+C=1A+C=1
A+B=0A+B=0
B+C=0B+C=0
From the equations, we get: - A=12,B=12,C=12A=\dfrac{1}{2},B=\dfrac{-1}{2},C=\dfrac{1}{2}
We will put these values in equation (vii). After doing this, we will get: -
dp(1+p2)(1+p)=12dp(1+p)+12(p+1)dp(1+p2)\int{\dfrac{dp}{\left( 1+{{p}^{2}} \right)\left( 1+p \right)}}=\dfrac{1}{2}\int{\dfrac{dp}{\left( 1+p \right)}+\dfrac{1}{2}\int{\dfrac{\left( -p+1 \right)dp}{\left( 1+{{p}^{2}} \right)}}}
=12ln(1+p)+12tan1p14ln(1+p2)=\dfrac{1}{2}\ln \left( 1+p \right)+\dfrac{1}{2}{{\tan }^{-1}}p-\dfrac{1}{4}\ln \left( 1+{{p}^{2}} \right)
We will now put this value in the above differential equation: -
12ln(1+p)+12tan1p14ln(1+p2)=x+c\dfrac{1}{2}\ln \left( 1+p \right)+\dfrac{1}{2}{{\tan }^{-1}}p-\dfrac{1}{4}\ln \left( 1+{{p}^{2}} \right)=x+c
We will now put the value back to p=tantp=\tan t, after doing this, we will get: -
12ln(1+tant)+12t14ln(1+tan2p)=x+c\dfrac{1}{2}\ln \left( 1+\tan t \right)+\dfrac{1}{2}t-\dfrac{1}{4}\ln \left( 1+{{\tan }^{2}}p \right)=x+c
Now, we know that t=x+yt=x+y. After substituting this, we get;
12ln(1+tan(x+y))+12(x+y)14ln(1+tan2(x+y))x=c\dfrac{1}{2}\ln \left( 1+\tan \left( x+y \right) \right)+\dfrac{1}{2}\left( x+y \right)-\dfrac{1}{4}\ln \left( 1+{{\tan }^{2}}\left( x+y \right) \right)-x=c
ln(1+tan(x+y))+(yx)12ln(1+tan2(x+y))=c\Rightarrow \ln \left( 1+\tan \left( x+y \right) \right)+\left( y-x \right)-\dfrac{1}{2}\ln \left( 1+{{\tan }^{2}}\left( x+y \right) \right)=c
This is the required solution of our differential equation.

Note: In the question, we are not given the values of x and y which satisfy the function. So, we cannot eliminate c from the required solution. Thus, this is a general solution where c can have any value.