Solveeit Logo

Question

Question: Solve the differential equation \(\dfrac{{dy}}{{dx}} + y\tan x = {\cos ^3}x\)...

Solve the differential equation dydx+ytanx=cos3x\dfrac{{dy}}{{dx}} + y\tan x = {\cos ^3}x

Explanation

Solution

Hint:-Use the integrating factor method to get the solution for the above problem .

Given differential equation is dydx+ytanx=cos3x\dfrac{{dy}}{{dx}} + y\tan x = {\cos ^3}x
Let tanx=p,cos3x=q\tan x = p,{\cos ^3}x = q
Let the integrating factor (I.F) = epdx{e^{\int {pdx} }}
We know that
p=tanxp = \tan x
Substitute the p value in I.F
etanxdx\Rightarrow {e^{\int {\tan xdx} }}
eln(secx)\Rightarrow {e^{\ln (\sec x)}} [tanxdx=ln(secx)\because \int {\tan xdx = \ln (\sec x)} ]
secx\Rightarrow \sec x [\because ee is the inverse function of ln where it gets cancel]

Here the solution of equation is of the form:
y(I.F)=q×I.Fdxy(I.F) = \int {q \times I.Fdx}
Now let us simplify the equation by substituting the values
 y.secx=cos3xsecxdx y.secx=cos3x(1cosx)dx  \ \Rightarrow y.\sec x = \int {{{\cos }^3}x\sec xdx} \\\ \Rightarrow y.\sec x = \int {{{\cos }^3}x\left( {\frac{1}{{\cos x}}} \right)} dx \\\ \
y.secx=cos2xdx\Rightarrow y.\sec x = \int {{{\cos }^2}xdx}
y.secx=1+cos2x2dx\Rightarrow y.\sec x = \int {\frac{{1 + \cos 2x}}{2}dx} [cos2x=2cos2x1][\because \cos 2x = 2{\cos ^2}x - 1]
y=x.cosx2+14sin2x.cosx+cosx+C\Rightarrow y = \dfrac{{x.\cos x}}{2} + \frac{1}{4}\sin 2x.\cos x + \cos x + C
NOTE: In this kind of problems everyone solves the problems without using the integrating factor method (I.F) which is very important to use.