Solveeit Logo

Question

Question: Solve the differential equation \(\dfrac{dy}{dx}+y\tan x=\sin x\)...

Solve the differential equation
dydx+ytanx=sinx\dfrac{dy}{dx}+y\tan x=\sin x

Explanation

Solution

Hint: Observe that the given differential equation is a linear differential equation, i.e. a differential equation of the form dydx+P(x)y=Q(x)\dfrac{dy}{dx}+P\left( x \right)y=Q\left( x \right). The solution of a linear differential equation is given by
yI.F=Q(x)I.FdxyI.F=\int{Q\left( x \right)I.Fdx}, where IF=eP(x)dxIF={{e}^{\int{P\left( x \right)dx}}}. Find the integrating factor of the given differential equation and hence find the solution of the given equation. Verify your answer.

Complete step-by-step answer:
We have dydx+ytanx=sinx\dfrac{dy}{dx}+y\tan x=\sin x, which is of the form of dydx+P(x)y=Q(x)\dfrac{dy}{dx}+P\left( x \right)y=Q\left( x \right).
Here P(x)=tanxP\left( x \right)=\tan x and Q(x)=sinxQ\left( x \right)=\sin x.
Now, we know that the integrating factor IF of a linear differential equation is given by
IF=eP(x)dxIF={{e}^{\int{P\left( x \right)dx}}}
Hence, the integrating factor of the given differential equation is given by
IF=etanxdxIF={{e}^{\int{\tan xdx}}}.
We know that tanxdx=ln(secx)+C\int{\tan xdx}=\ln \left( \sec x \right)+C
Hence, we have IF=eln(secx)IF={{e}^{\ln \left( \sec x \right)}}
We know that elnx=x{{e}^{\ln x}}=x
Hence, we have
IF=secxIF=\sec x
Now, we know that the solution of a linear differential equation is given by
yIF=Q(x)IFdxyIF=\int{Q\left( x \right)IFdx}
Hence, the solution of the given equation is
ysecx=sinxsecxdxy\sec x=\int{\sin x\sec xdx}
Now, we have
sinxsecx=sinxcosx=tanx\sin x\sec x=\dfrac{\sin x}{\cos x}=\tan x
Hence, we have
ysecx=tanxdxy\sec x=\int{\tan xdx}
We know that
tanxdx=ln(secx)\int{\tan xdx}=\ln \left( \sec x \right)
Hence, we have
ysecx=ln(secx)+Cy\sec x=\ln \left( \sec x \right)+C
Dividing both sides by secx\sec x, we get
y=cosxln(secx)+Ccosxy=\cos x\ln \left( \sec x \right)+C\cos x, which is the required solution of the given differential equation.

Note: Verification.
We have
y=cosxln(secx)+Ccosxy=\cos x\ln \left( \sec x \right)+C\cos x
Differentiating both sides, we get
dydx=sinxln(secx)+cosxtanxCsinx\dfrac{dy}{dx}=-\sin x\ln \left( \sec x \right)+\cos x\tan x-C\sin x
Adding ytanxy\tan x on both sides, we get
dydx+ytanx=dydx=sinxln(secx)+cosxtanxCsinx+tanx(cosxln(secx)+Ccosx)\dfrac{dy}{dx}+y\tan x=\dfrac{dy}{dx}=-\sin x\ln \left( \sec x \right)+\cos x\tan x-C\sin x+\tan x\left( \cos x\ln \left( \sec x \right)+C\cos x \right)
We have tanxcosx=sinxcosxcosx=sinx\tan x\cos x=\dfrac{\sin x}{\cos x}\cos x=\sin x
Hence, we have
dydx+ytanx=sinxln(secx)+sinxCsinx+sinxln(secx)+Csinx\dfrac{dy}{dx}+y\tan x=-\sin x\ln \left( \sec x \right)+\sin x-C\sin x+\sin x\ln \left( \sec x \right)+C\sin x
Simplifying, we get
dydx+ytanx=sinx\dfrac{dy}{dx}+y\tan x=\sin x, which is the given differential equation.
Hence our answer is verified to be correct.