Question
Question: Solve the complex number (35i+10)/(40i+64)...
Solve the complex number (35i+10)/(40i+64)
Answer
712255+712230i
Explanation
Solution
Solution:
We wish to simplify
40i+6435i+10=64+40i10+35i.Multiply numerator and denominator by the conjugate of the denominator, 64−40i:
(64+40i)(64−40i)(10+35i)(64−40i).Step 1: Numerator Calculation
(10+35i)(64−40i)=10⋅64+10⋅(−40i)+35i⋅64+35i⋅(−40i) =640−400i+2240i−1400i2.Since i2=−1, we have:
−1400i2=1400.Thus, the numerator becomes:
640+1400+(2240i−400i)=2040+1840i.Step 2: Denominator Calculation
(64+40i)(64−40i)=642−(40i)2=4096−1600i2.Using i2=−1:
4096−1600(−1)=4096+1600=5696.Step 3: Write in a+bi Form and Simplify
Thus, we have:
56962040+1840i.Divide numerator and denominator by 8:
5696÷82040÷8+1840i÷8=712255+230i.So, the expression in a+bi form is:
712255+712230i.