Solveeit Logo

Question

Question: Solve the complex number (35i+10)/(40i+64)...

Solve the complex number (35i+10)/(40i+64)

Answer

255712+230712i\frac{255}{712}+\frac{230}{712}i

Explanation

Solution

Solution:

We wish to simplify

35i+1040i+64=10+35i64+40i.\frac{35i + 10}{40i + 64} = \frac{10 + 35i}{64 + 40i}.

Multiply numerator and denominator by the conjugate of the denominator, 6440i64-40i:

(10+35i)(6440i)(64+40i)(6440i).\frac{(10+35i)(64-40i)}{(64+40i)(64-40i)}.

Step 1: Numerator Calculation

(10+35i)(6440i)=1064+10(40i)+35i64+35i(40i)(10+35i)(64-40i)= 10\cdot64 + 10\cdot(-40i) + 35i\cdot64 + 35i\cdot(-40i) =640400i+2240i1400i2.= 640 - 400i + 2240i - 1400i^2.

Since i2=1i^2=-1, we have:

1400i2=1400.-1400i^2 = 1400.

Thus, the numerator becomes:

640+1400+(2240i400i)=2040+1840i.640 + 1400 + (2240i-400i)= 2040 + 1840i.

Step 2: Denominator Calculation

(64+40i)(6440i)=642(40i)2=40961600i2.(64+40i)(64-40i)= 64^2 - (40i)^2=4096 - 1600i^2.

Using i2=1i^2=-1:

40961600(1)=4096+1600=5696.4096 - 1600(-1)=4096+1600=5696.

Step 3: Write in a+bia+bi Form and Simplify

Thus, we have:

2040+1840i5696.\frac{2040+1840i}{5696}.

Divide numerator and denominator by 8:

2040÷8+1840i÷85696÷8=255+230i712.\frac{2040\div 8 + 1840i\div 8}{5696\div 8} = \frac{255+230i}{712}.

So, the expression in a+bia+bi form is:

255712+230712i.\frac{255}{712}+\frac{230}{712}i.