Solveeit Logo

Question

Question: Solve the below trigonometric function, \(\dfrac{{\left( {\sqrt 2 - \sin \alpha - \cos \alpha } \r...

Solve the below trigonometric function,
(2sinαcosα)(sinαcosα)=\dfrac{{\left( {\sqrt 2 - \sin \alpha - \cos \alpha } \right)}}{{\left( {\sin \alpha - \cos \alpha } \right)}} =
A.sec(α2π8)\sec \left( {\dfrac{\alpha }{2} - \dfrac{\pi }{8}} \right)
B.cos(π8α2)\cos \left( {\dfrac{\pi }{8} - \dfrac{\alpha }{2}} \right)
C.tan(α2π8)\tan \left( {\dfrac{\alpha }{2} - \dfrac{\pi }{8}} \right)
D.cot(α2π2)\cot \left( {\dfrac{\alpha }{2} - \dfrac{\pi }{2}} \right)

Explanation

Solution

First, we shall analyze the given information so that we can able to solve the problem. Here we are asked to calculate the value of the given trigonometric expression. To find the required answer, we need to apply the appropriate formulae and trigonometric identities in the given expression. Here, we need to take out 2\sqrt 2 as a common term from both the numerator and the denominator. Next, we need to arrange the terms for our convenience. Then, we need to apply the required formulae to obtain the desired answer.
Formula to be used:
The required trigonometric identity and trigonometric formulae to be used are as follows.
a) sinπ4=12\sin \dfrac{\pi }{4} = \dfrac{1}{2}
b) cosπ4=12\cos \dfrac{\pi }{4} = \dfrac{1}{2}
c) cos(ab)=cosacosb+sinasinb\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b
d) sin(ab)=sinacosbcosasinb\sin \left( {a - b} \right) = \sin a\cos b - \cos a\sin b
e) 1cosθ=2sin2θ21 - \cos \theta = 2{\sin ^2}\dfrac{\theta }{2}
f) sinθ=2sinθ2cosθ2\sin \theta = 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}

Complete answer:
Let us solve the given expression.
(2sinαcosα)(sinαcosα)=(222sinα22cosα)(22sinα22cosα)\dfrac{{\left( {\sqrt 2 - \sin \alpha - \cos \alpha } \right)}}{{\left( {\sin \alpha - \cos \alpha } \right)}} = \dfrac{{\left( {\sqrt 2 - \dfrac{{\sqrt 2 }}{{\sqrt 2 }}\sin \alpha - \dfrac{{\sqrt 2 }}{{\sqrt 2 }}\cos \alpha } \right)}}{{\left( {\dfrac{{\sqrt 2 }}{{\sqrt 2 }}\sin \alpha - \dfrac{{\sqrt 2 }}{{\sqrt 2 }}\cos \alpha } \right)}}
In the above step, we have multiplied and divided by 2\sqrt 2 in the coefficient 11
=2(112sinα12cosα)2(12sinα12cosα)= \dfrac{{\sqrt 2 \left( {1 - \dfrac{1}{{\sqrt 2 }}\sin \alpha - \dfrac{1}{{\sqrt 2 }}\cos \alpha } \right)}}{{\sqrt 2 \left( {\dfrac{1}{{\sqrt 2 }}\sin \alpha - \dfrac{1}{{\sqrt 2 }}\cos \alpha } \right)}} (Here we have taken 2\sqrt 2 as the common term)
=112sinα12cosα12sinα12cosα= \dfrac{{1 - \dfrac{1}{{\sqrt 2 }}\sin \alpha - \dfrac{1}{{\sqrt 2 }}\cos \alpha }}{{\dfrac{1}{{\sqrt 2 }}\sin \alpha - \dfrac{1}{{\sqrt 2 }}\cos \alpha }}
=1[12sinα+12cosα]12sinα12cosα= \dfrac{{1 - \left[ {\dfrac{1}{{\sqrt 2 }}\sin \alpha + \dfrac{1}{{\sqrt 2 }}\cos \alpha } \right]}}{{\dfrac{1}{{\sqrt 2 }}\sin \alpha - \dfrac{1}{{\sqrt 2 }}\cos \alpha }} (Here we have taken 11 as a common term)
=1[sinπ4sinα+cosπ4cosα]cosπ4sinαsinπ4cosα= \dfrac{{1 - \left[ {\sin \dfrac{\pi }{4}\sin \alpha + \cos \dfrac{\pi }{4}\cos \alpha } \right]}}{{\cos \dfrac{\pi }{4}\sin \alpha - \sin \dfrac{\pi }{4}\cos \alpha }} (Here we applied sinπ4=12\sin \dfrac{\pi }{4} = \dfrac{1}{2} and cosπ4=12\cos \dfrac{\pi }{4} = \dfrac{1}{2} )
=1[cosαcosπ4+sinαsinπ4]sinαcosπ4cosαsinπ4= \dfrac{{1 - \left[ {\cos \alpha \cos \dfrac{\pi }{4} + \sin \alpha \sin \dfrac{\pi }{4}} \right]}}{{\sin \alpha \cos \dfrac{\pi }{4} - \cos \alpha \sin \dfrac{\pi }{4}}} (Here we rewritten the terms for our convenience)
Now, we need to apply the formulae cos(ab)=cosacosb+sinasinb\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b and sin(ab)=sinacosbcosasinb\sin \left( {a - b} \right) = \sin a\cos b - \cos a\sin b .
Also, we can note that a is equal to α\alpha and b is equal to π4\dfrac{\pi }{4} . So, we need to just put a=αa = \alpha and b=π4b = \dfrac{\pi }{4} in the above formulae.
Thus, we have
(2sinαcosα)(sinαcosα)=1[cos(απ4)]sin(απ4)\dfrac{{\left( {\sqrt 2 - \sin \alpha - \cos \alpha } \right)}}{{\left( {\sin \alpha - \cos \alpha } \right)}} = \dfrac{{1 - \left[ {\cos \left( {\alpha - \dfrac{\pi }{4}} \right)} \right]}}{{\sin \left( {\alpha - \dfrac{\pi }{4}} \right)}}
=2sin2(απ4)2sin(απ4)= \dfrac{{2{{\sin }^2}\dfrac{{\left( {\alpha - \dfrac{\pi }{4}} \right)}}{2}}}{{\sin \left( {\alpha - \dfrac{\pi }{4}} \right)}} (Here we applied the trigonometric identity 1cosθ=2sin2θ21 - \cos \theta = 2{\sin ^2}\dfrac{\theta }{2} and θ=απ4\theta = \alpha - \dfrac{\pi }{4} )
=2sin2(απ4)22sin(απ4)2cos(απ4)2= \dfrac{{2{{\sin }^2}\dfrac{{\left( {\alpha - \dfrac{\pi }{4}} \right)}}{2}}}{{2\sin \dfrac{{\left( {\alpha - \dfrac{\pi }{4}} \right)}}{2}\cos \dfrac{{\left( {\alpha - \dfrac{\pi }{4}} \right)}}{2}}} (Here we applied the identity sinθ=2sinθ2cosθ2\sin \theta = 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2} and θ=απ4\theta = \alpha - \dfrac{\pi }{4} )
=2sin2(α2π8)2sin(α2π8)cos(α2π8)= \dfrac{{2{{\sin }^2}\left( {\dfrac{\alpha }{2} - \dfrac{\pi }{8}} \right)}}{{2\sin \left( {\dfrac{\alpha }{2} - \dfrac{\pi }{8}} \right)\cos \left( {\dfrac{\alpha }{2} - \dfrac{\pi }{8}} \right)}}
=sin(α2π8)cos(α2π8)= \dfrac{{\sin \left( {\dfrac{\alpha }{2} - \dfrac{\pi }{8}} \right)}}{{\cos \left( {\dfrac{\alpha }{2} - \dfrac{\pi }{8}} \right)}}
=tan(α2π8)= \tan \left( {\dfrac{\alpha }{2} - \dfrac{\pi }{8}} \right)
Therefore, (2sinαcosα)(sinαcosα)=tan(α2π8)\dfrac{{\left( {\sqrt 2 - \sin \alpha - \cos \alpha } \right)}}{{\left( {\sin \alpha - \cos \alpha } \right)}} = \tan \left( {\dfrac{\alpha }{2} - \dfrac{\pi }{8}} \right)

Hence, option C) is the required answer.

Note:
In the mid part of the problem, we can also assume θ=απ4\theta = \alpha - \dfrac{\pi }{4}.
(2sinαcosα)(sinαcosα)=1[cos(απ4)]sin(απ4)\dfrac{{\left( {\sqrt 2 - \sin \alpha - \cos \alpha } \right)}}{{\left( {\sin \alpha - \cos \alpha } \right)}} = \dfrac{{1 - \left[ {\cos \left( {\alpha - \dfrac{\pi }{4}} \right)} \right]}}{{\sin \left( {\alpha - \dfrac{\pi }{4}} \right)}}
In the above step, we shall assume that θ=απ4\theta = \alpha - \dfrac{\pi }{4}
Thus, we have (2sinαcosα)(sinαcosα)=\dfrac{{\left( {\sqrt 2 - \sin \alpha - \cos \alpha } \right)}}{{\left( {\sin \alpha - \cos \alpha } \right)}} = 1[cosθ]sinθ\dfrac{{1 - \left[ {\cos \theta } \right]}}{{\sin \theta }}
=2sin2θ2sinθ= \dfrac{{2{{\sin }^2}\dfrac{\theta }{2}}}{{\sin \theta }} (Here we applied the trigonometric identity 1cosθ=2sin2θ21 - \cos \theta = 2{\sin ^2}\dfrac{\theta }{2} )
=2sin2θ22sinθ2cosθ2= \dfrac{{2{{\sin }^2}\dfrac{\theta }{2}}}{{2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}}} (Here we applied the trigonometric identity sinθ=2sinθ2cosθ2\sin \theta = 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2} )
=sinθ2cosθ2= \dfrac{{\sin \dfrac{\theta }{2}}}{{\cos \dfrac{\theta }{2}}}
=tanθ2= \tan \dfrac{\theta }{2}
Now, we shall substitute our assumption θ=απ4\theta = \alpha - \dfrac{\pi }{4}
Thus, we have (2sinαcosα)(sinαcosα)=tan(απ42)\dfrac{{\left( {\sqrt 2 - \sin \alpha - \cos \alpha } \right)}}{{\left( {\sin \alpha - \cos \alpha } \right)}} = \tan \left( {\dfrac{{\alpha - \dfrac{\pi }{4}}}{2}} \right)
=tan(α2π8)= \tan \left( {\dfrac{\alpha }{2} - \dfrac{\pi }{8}} \right)
Therefore, (2sinαcosα)(sinαcosα)=tan(α2π8)\dfrac{{\left( {\sqrt 2 - \sin \alpha - \cos \alpha } \right)}}{{\left( {\sin \alpha - \cos \alpha } \right)}} = \tan \left( {\dfrac{\alpha }{2} - \dfrac{\pi }{8}} \right)
Hence, we got the same answer as we got earlier. It will be easy for us when we assumed θ=απ4\theta = \alpha - \dfrac{\pi }{4}