Solveeit Logo

Question

Question: Solve the algebraic expression \({(x + y)^3} \)....

Solve the algebraic expression (x+y)3{(x + y)^3} .

Explanation

Solution

In order to this question, to find the final value of the given algebraic expression (x+y)3{(x + y)^3} , we will apply the algebraic formula, (a+b)3=a3+b3+3a2b+3ab2{(a + b)^3} = {a^3} + {b^3} + 3{a^2}b + 3a{b^2} or we can first split the expression and solve by (a+b)2=a2+b2+2ab{(a + b)^2} = {a^2} + {b^2} + 2ab .

Complete step by step solution:
Given algebraic expression is (x+y)3{(x + y)^3} .

We can solve the expression by the help of cube of binomial process:
Step-1: First write the cube of the binomial (x+y)3=(x+y)×(x+y)×(x+y){(x + y)^3} = (x + y) \times (x + y) \times (x + y)
Step-2: Multiply the first two binomials and keep the third one as it is

(x+y)3=(x+y)×(x+y)×(x+y) (x+y)3=[x(x+y)+y(x+y)](x+y) (x+y)3=[x2+xy+xy+y2](x+y) (x+y)3=[x2+2xy+y2](x+y)  {(x + y)^3} = (x + y) \times (x + y) \times (x + y) \\\ \Rightarrow {(x + y)^3} = [x(x + y) + y(x + y)](x + y) \\\ \Rightarrow {(x + y)^3} = [{x^2} + xy + xy + {y^2}](x + y) \\\ \Rightarrow {(x + y)^3} = [{x^2} + 2xy + {y^2}](x + y) \\\

Step 3: Multiply the remaining binomial to the trinomial so obtained:

(x+y)3=[x2+2xy+y2](x+y) (x+y)3=x(x2+2xy+y2)+y(x2+2xy+y2) (x+y)3=x3+2x2y+xy2+x2y+2xy2+y3 (x+y)3=x3+2x2y+x2y+xy2+2xy2+y3 (x+y)3=x3+3x2y+3xy2+y3 (x+y)3=x3+y3+3x2y+3xy2 (x+y)3=x3+y3+3xy(x+y)  {(x + y)^3} = [{x^2} + 2xy + {y^2}](x + y) \\\ \Rightarrow {(x + y)^3} = x({x^2} + 2xy + {y^2}) + y({x^2} + 2xy + {y^2}) \\\ \Rightarrow {(x + y)^3} = {x^3} + 2{x^2}y + x{y^2} + {x^2}y + 2x{y^2} + {y^3} \\\ \Rightarrow {(x + y)^3} = {x^3} + 2{x^2}y + {x^2}y + x{y^2} + 2x{y^2} + {y^3} \\\ \Rightarrow {(x + y)^3} = {x^3} + 3{x^2}y + 3x{y^2} + {y^3} \\\ \Rightarrow {(x + y)^3} = {x^3} + {y^3} + 3{x^2}y + 3x{y^2} \\\ \Rightarrow {(x + y)^3} = {x^3} + {y^3} + 3xy(x + y) \\\

Note:
Alternative approach:
We can solve the given expression by the help of algebraic formula-
(a+b)3=a3+b3+3a2b+3ab2{(a + b)^3} = {a^3} + {b^3} + 3{a^2}b + 3a{b^2}
Or by splitting the expression in the simplest form first.
Both methods will acquire the same result.
So, we have-
(x+y)3 =(x+y)(x+y)2 =(x+y)(x2+y2+2xy) =x3+xy2+2x2y+x2y+y3+2xy2 =x3+3xy2+3x2y+y3  {(x + y)^3} \\\ = (x + y){(x + y)^2} \\\ = (x + y)({x^2} + {y^2} + 2xy) \\\ = {x^3} + x{y^2} + 2{x^2}y + {x^2}y + {y^3} + 2x{y^2} \\\ = {x^3} + 3x{y^2} + 3{x^2}y + {y^3} \\\
Hence, (x+y)3=x3+3xy2+3x2y+y3{(x + y)^3} = {x^3} + 3x{y^2} + 3{x^2}y + {y^3}.
An algebraic formula is a mathematical or algebraic law written as an equation. It's a two-sided equation with algebraic expressions on both sides. The algebraic formula is a simple, easy-to-remember formula for solving complex algebraic problems.