Question
Question: Solve: \(\tan x\tan 2x + \tan 2x\tan 3x + \tan 3x\tan 4x + ......n{\text{ terms}} = \)...
Solve:
tanxtan2x+tan2xtan3x+tan3xtan4x+......n terms=
Solution
Hint: - Use tan(a−b)=1+tanatanbtana−tanb
Given:
tanxtan2x+tan2xtan3x+tan3xtan4x+......n terms
Last term of this series is tannxtan((n+1)x)
⇒tanxtan2x+tan2xtan3x+tan3xtan4x+.......+tannxtan((n+1)x)
Now, as we know
So, applying this property in each term of the given series we get
⇒tanxtan2x+tan2xtan3x+tan3xtan4x+.......+tannxtan((n+1)x) ⇒(tan(2x−x)tan2x−tanx−tan(2x−x))+(tan(3x−2x)tan3x−tan2x−tan(3x−2x))+(tan(4x−3x)tan4x−tan3x−tan(4x−3x))+........... ..............+(tan(nx+x−nx)tan((n+1)x)−tannx−tan(nx+x−nx)) ⇒tanxtan2x−tanx−tanx+tan3x−tan2x−tanx+tan4x−tan3x−tanx+..................+tan((n+1)x)−tannx−tanxNow, we see many terms are cancel out the remaining terms are,
⇒tanx−tanx+(−tanx−tanx−.....................+tan((n+1)x)−tanx) ⇒tanx−tanx+(−tanx−tanx−.....................−tanx)+tan((n+1)x) ⇒tanx−tanx−tanx(1+1+1+.......................+1)+tan((n+1)x)As we know sum of 1 up to n terms is n
⇒tanx(tan((n+1)x)−ntanx)−tanx=tanxtan((n+1)x)−(n+1)tanx
So, this is the required sum of the given series.
Note: - In such types of questions always remember to always remember all the basic formulas of trigonometric identities, then apply this formula in the given equation and simplify, we will get the required answer.