Solveeit Logo

Question

Question: Solve \[\tan \left[ {\left( {\dfrac{1}{2}} \right){{\sin }^{ - 1}}\left( {\dfrac{{2a}}{{\left( {1 + ...

Solve tan[(12)sin1(2a(1+a2))+(12)cos1((1a2)(1+a2))]=\tan \left[ {\left( {\dfrac{1}{2}} \right){{\sin }^{ - 1}}\left( {\dfrac{{2a}}{{\left( {1 + {a^2}} \right)}}} \right) + \left( {\dfrac{1}{2}} \right){{\cos }^{ - 1}}\left( {\dfrac{{\left( {1 - {a^2}} \right)}}{{\left( {1 + {a^2}} \right)}}} \right)} \right] =
A.2a(1+a2)\dfrac{{2a}}{{\left( {1 + {a^2}} \right)}}
B.(1a2)(1+a2)\dfrac{{\left( {1 - {a^2}} \right)}}{{\left( {1 + {a^2}} \right)}}
C.2a(1a2)\dfrac{{2a}}{{\left( {1 - {a^2}} \right)}}
D.None of these

Explanation

Solution

Hint : In the given question the expression is related to the inverse trigonometric function with variables as angles . So , whenever the variables are present , try to substitute the value of the given variable with another trigonometric function to form an identity or formula and then solve it accordingly .

Complete step-by-step answer :
Given : tan[(12)sin1(2a(1+a2))+(12)cos1((1a2)(1+a2))]\tan \left[ {\left( {\dfrac{1}{2}} \right){{\sin }^{ - 1}}\left( {\dfrac{{2a}}{{\left( {1 + {a^2}} \right)}}} \right) + \left( {\dfrac{1}{2}} \right){{\cos }^{ - 1}}\left( {\dfrac{{\left( {1 - {a^2}} \right)}}{{\left( {1 + {a^2}} \right)}}} \right)} \right] ………..equation (A)
In this question we will solve the sin1(2a(1+a2)){\sin ^{ - 1}}\left( {\dfrac{{2a}}{{\left( {1 + {a^2}} \right)}}} \right) and cos1((1a2)(1+a2)){\cos ^{ - 1}}\left( {\dfrac{{\left( {1 - {a^2}} \right)}}{{\left( {1 + {a^2}} \right)}}} \right) differently for ease .
So , for sin1(2a(1+a2)){\sin ^{ - 1}}\left( {\dfrac{{2a}}{{\left( {1 + {a^2}} \right)}}} \right) , we will put a=tanxa = \tan x , we get
=sin1(2tanx(1+tan2x))= {\sin ^{ - 1}}\left( {\dfrac{{2\tan x}}{{\left( {1 + {{\tan }^2}x} \right)}}} \right)
The above expression represents the identity for sin2x=2tanx1+tan2x\sin 2x = \dfrac{{2\tan x}}{{1 + {{\tan }^2}x}} ,
Therefore on solving we get ,
=sin1(sin2x)= {\sin ^{ - 1}}\left( {\sin 2x} \right)
On simplifying we get ,
=2x= 2x
Now solving the term cos1((1a2)(1+a2)){\cos ^{ - 1}}\left( {\dfrac{{\left( {1 - {a^2}} \right)}}{{\left( {1 + {a^2}} \right)}}} \right) we get
Putting the value of a=tanya = \tan y, we get
=cos1((1tany2)(1+tany2))= {\cos ^{ - 1}}\left( {\dfrac{{\left( {1 - \tan {y^2}} \right)}}{{\left( {1 + \tan {y^2}} \right)}}} \right)
The above expression represents the identity for cos2x=1tan2y1+tan2y\cos 2x = \dfrac{{1 - {{\tan }^2}y}}{{1 + {{\tan }^2}y}}
Therefore , we get
=cos1(cos2y)= {\cos ^{ - 1}}\left( {\cos 2y} \right)
On simplifying we get
=2y= 2y
Now , putting the value of both the terms in the equation (A) , we get
=tan[(12)×2x+(12)×2y]= \tan \left[ {\left( {\dfrac{1}{2}} \right) \times 2x + \left( {\dfrac{1}{2}} \right) \times 2y} \right]
On solving we get
=tan[x+y]= \tan \left[ {x + y} \right]
Now using the identity of tan(A+B)=tanA+tanB1tanAtanB\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}} we get ,
=tanx+tany1tanxtany= \dfrac{{\tan x + \tan y}}{{1 - \tan x\tan y}}
Now putting the values of x=tan1ax = {\tan ^{ - 1}}a and y=tan1ay = {\tan ^{ - 1}}a we get ,
=tan(tan1a)+tan(tan1a)1tan(tan1a)tan(tan1a)= \dfrac{{\tan \left( {{{\tan }^{ - 1}}a} \right) + \tan \left( {{{\tan }^{ - 1}}a} \right)}}{{1 - \tan \left( {{{\tan }^{ - 1}}a} \right)\tan \left( {{{\tan }^{ - 1}}a} \right)}} on simplifying we get ,
=a+a1a×a= \dfrac{{a + a}}{{1 - a \times a}}
On solving further we get ,
=2a1a2= \dfrac{{2a}}{{1 - {a^2}}}
Therefore , the correct answer is option (C) for the given question .
So, the correct answer is “Option C”.

Note : Inverse Trigonometric Functions plays an important role in calculus to find out the various integrals . Inverse trigonometric functions are also used in other areas such as science and engineering . The inverse of function is not cancelled out with same trigonometric function like sin1(sinx){\sin ^{ - 1}}(\sin x) , here trigonometric function is not cancelled out with its inverse it's just like equating the angles as the angles in range of sinx\sin x .