Solveeit Logo

Question

Question: Solve \(\tan ^{ - 1}x + \tan ^{ - 1}2x = n\pi - \tan ^{ - 1}3x\), \(n \in I, x \in R\), for n and x ...

Solve tan1x+tan12x=nπtan13x\tan ^{ - 1}x + \tan ^{ - 1}2x = n\pi - \tan ^{ - 1}3x, nI,xRn \in I, x \in R, for n and x

(This question has multiple correct options)

(A). x = 0,n = 0

(B). x = 1,n = 1

(C). x = - 1,n = - 1

(D). x = 2,n = 2

Explanation

Solution

Hint: Let’s split the equation into different cases like when n I+ and nI\in {{\text{I}}^ + }{\text{ and n}} \in {{\text{I}}^ - }. Then finding out the value of the equation for different cases will make the problem easy. Now, apply this logic and find out the answer.

Complete step by step answer:

It is given that,

tan1(x)+tan1(2x)=nπtan1(3x) (1)\Rightarrow {\tan ^{ - 1}}(x) + {\tan ^{ - 1}}(2x) = n\pi - {\tan ^{ - 1}}(3x){\text{ (1)}}

As we know by trigonometry formula that,

tan1(A)+tan1(B)=tan1(A+B1AB) (2)\Rightarrow {\tan ^{ - 1}}(A) + {\tan ^{ - 1}}(B) = {\tan ^{ - 1}}\left( {\dfrac{{A + B}}{{1 - AB}}} \right){\text{ (2)}}

So, according to the formula at equation 2 we can write,

tan1(x)+tan1(2x)=tan1(x+2x1x2x)=tan1(3x12x2) (3)\Rightarrow {\tan ^{ - 1}}(x) + {\tan ^{ - 1}}(2x) = {\tan ^{ - 1}}\left( {\dfrac{{x + 2x}}{{1 - x*2x}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{3x}}{{1 - 2{x^2}}}} \right){\text{ (3)}}

As from equation 1 and equation 3 we see that it can be written that,

nπtan1(3x) =tan1(3x12x2) (4)\Rightarrow n\pi - {\tan ^{ - 1}}(3x){\text{ }} = {\tan ^{ - 1}}\left( {\dfrac{{3x}}{{1 - 2{x^2}}}} \right){\text{ (4)}}

Now, taking tan both sides of the equation 4 we will get,

3x12x2=tan(nπtan1(3x)) (5)\Rightarrow \dfrac{{3x}}{{1 - 2{x^2}}} = \tan \left( {n\pi - {{\tan }^{ - 1}}(3x)} \right){\text{ (5)}}

Now as we can see from the question that nI,n \in I,

So, there can be two cases and that were,

Case 1: - When n I+\in {I^ + } (when all n as an positive integer)

In this case of equation 5 can be written as,

3x12x2=tan(tan1(3x))\Rightarrow \dfrac{{3x}}{{1 - 2{x^2}}} = - \tan \left( {{{\tan }^{ - 1}}(3x)} \right) because tan(nπθ) = - tan(θ) when nI+ tan\left( {n\pi - \theta } \right){\text{ = - tan}}\left( \theta \right){\text{ when }}n \in {I^ + }{\text{ }}

So, 3x12x2=3x\Rightarrow {\text{So, }}\dfrac{{3x}}{{1 - 2{x^2}}} = - 3x as we know that,

As, we know that tan(tan1(A))=A\tan \left( {{{\tan }^{ - 1}}(A)} \right) = A

3x12x2=3x (6)\Rightarrow \dfrac{{3x}}{{1 - 2{x^2}}} = - 3x{\text{ (6)}}

Adding 3x to both sides of equation 6 we get,

3x(112x2+1)=0\Rightarrow {\text{3x}}\left( {\dfrac{1}{{1 - 2{x^2}}} + 1} \right) = 0

On taking LCM of the above equation we get,

 3x(22x212x2)=6x(1x212x2)=0 (7)\Rightarrow {\text{ 3x}}\left( {\dfrac{{2 - 2{x^2}}}{{1 - 2{x^2}}}} \right) = 6{\text{x}}\left( {\dfrac{{1 - {x^2}}}{{1 - 2{x^2}}}} \right) = 0{\text{ (7)}}

Hence from equation 7 we get x = 0 and x21=0{x^2} - 1 = 0

So, x = 0, ±1\pm 1

\Rightarrow Hence for all n 0,1,2....N\in \\{ 0,1,2....N\\} we get x = - 1,0,1

Case 2: - When n I\in {I^ - } (For all n as negative integer)

In this case of equation 5 can be written as ,

3x12x2=tan(nπ+tan1(3x)) = 3x\dfrac{{3x}}{{1 - 2{x^2}}} = - \tan \left( {n\pi + {{\tan }^{ - 1}}(3x)} \right){\text{ = }} - 3x because n is negative and we

know that,

 - tan(nπ+θ) = - tan(θ) when nI here θ=tan1(3x)\Rightarrow {\text{ - tan}}\left( {n\pi + \theta } \right){\text{ = - tan(}}\theta ){\text{ when }}n \in {I^ - }{\text{ here }}\theta = {\tan ^{ - 1}}(3x)

So, 3x12x2=3x\dfrac{{3x}}{{1 - 2{x^2}}} = - 3x as we know that,

As, tan(tan1(A))=A\tan \left( {{{\tan }^{ - 1}}(A)} \right) = A

3x12x2=3x (8)\Rightarrow \dfrac{{3x}}{{1 - 2{x^2}}} = - 3x{\text{ (8)}}

Now adding 3x to both sides of the equation 8 we get,

 3x(112x2+1)=0\Rightarrow {\text{ 3x}}\left( {\dfrac{1}{{1 - 2{x^2}}} + 1} \right) = 0

On taking LCM of the above equation we get,

 3x(22x212x2)=6x(1x212x2)=0 (9)\Rightarrow {\text{ 3x}}\left( {\dfrac{{2 - 2{x^2}}}{{1 - 2{x^2}}}} \right) = 6{\text{x}}\left( {\dfrac{{1 - {x^2}}}{{1 - 2{x^2}}}} \right) = 0{\text{ (9)}}

Hence from equation 9 we get x = 0 and x21=0{x^2} - 1 = 0

So, x = 0, ±1\pm 1

\Rightarrow Hence for all n 0,1,2....N we get x=1,0,1\in \\{ 0,1,2....N\\} {\text{ we get }}x = \\{ - 1,0,1\\}

So, from cases 1 and 2 we found that Correct options for the above question are B, C and D.

NOTE: Remember the formula tan1(A)+tan1(B){\tan ^{ - 1}}(A) + {\tan ^{ - 1}}(B) and substitute in values properly in the given conditions. If you make mistakes while substituting the values, there are chances of missing out other right answers.