Solveeit Logo

Question

Question: Solve \({{\tan }^{-1}}\left[ \dfrac{\cos x}{1+\sin x} \right]\)....

Solve tan1[cosx1+sinx]{{\tan }^{-1}}\left[ \dfrac{\cos x}{1+\sin x} \right].

Explanation

Solution

For solving this question you should know about the general formulas of trigonometry for 2a angles. In this problem we will simply divide the angle xx as 2x2\dfrac{2x}{2} and thus it will be in the form of angle 2a. Then we will use the formulas of cos2a\cos 2a and sin2a\sin 2a to solve this problem. Then we divide it by cosx2\cos \dfrac{x}{2} and solve it forward.

Complete step by step answer:
According to the problem, we have to solve the expression tan1[cosx1+sinx]{{\tan }^{-1}}\left[ \dfrac{\cos x}{1+\sin x} \right]. We know that,
cos2x=cos2xsin2x\cos 2x={{\cos }^{2}}x-{{\sin }^{2}}x
Replacing xx by x2\dfrac{x}{2}, we get,
cos(2x2)=cos2x2sin2x2 cosx=cos2x2sin2x2(i) \begin{aligned} & \cos \left( \dfrac{2x}{2} \right)={{\cos }^{2}}\dfrac{x}{2}-{{\sin }^{2}}\dfrac{x}{2} \\\ & \Rightarrow \cos x={{\cos }^{2}}\dfrac{x}{2}-{{\sin }^{2}}\dfrac{x}{2}\ldots \ldots \ldots \left( i \right) \\\ \end{aligned}
We also know that,
sin2x=2sinxcosx\sin 2x=2\sin x\cos x
Replacing xx by x2\dfrac{x}{2}, we get,
sin(2x2)=2sinx2cosx2 sinx=2sinx2cosx2(ii) \begin{aligned} & \sin \left( \dfrac{2x}{2} \right)=2\sin \dfrac{x}{2}\cos \dfrac{x}{2} \\\ & \Rightarrow \sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}\ldots \ldots \ldots \left( ii \right) \\\ \end{aligned}
From equations (i) and (ii), we get,
tan1[cosx1+sinx]=tan1[cos2x2sin2x21+(2sinx2cosx2)] tan1[cosx1+sinx]=tan1[cos2(x2)sin2(x2)1+2sinx2cosx2] \begin{aligned} & {{\tan }^{-1}}\left[ \dfrac{\cos x}{1+\sin x} \right]={{\tan }^{-1}}\left[ \dfrac{{{\cos }^{2}}\dfrac{x}{2}-{{\sin }^{2}}\dfrac{x}{2}}{1+\left( 2\sin \dfrac{x}{2}\cos \dfrac{x}{2} \right)} \right] \\\ & \Rightarrow {{\tan }^{-1}}\left[ \dfrac{\cos x}{1+\sin x} \right]={{\tan }^{-1}}\left[ \dfrac{{{\cos }^{2}}\left( \dfrac{x}{2} \right)-{{\sin }^{2}}\left( \dfrac{x}{2} \right)}{1+2\sin \dfrac{x}{2}\cos \dfrac{x}{2}} \right] \\\ \end{aligned}
As sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1
Replacing xx by x2\dfrac{x}{2}, we get,
sin2x2+cos2x2=1{{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}=1
So, we can also write it as:

& ={{\tan }^{-1}}\left[ \dfrac{{{\cos }^{2}}\left( \dfrac{x}{2} \right)-{{\sin }^{2}}\left( \dfrac{x}{2} \right)}{{{\cos }^{2}}\dfrac{x}{2}+{{\sin }^{2}}\dfrac{x}{2}+2\sin \dfrac{x}{2}\cos \dfrac{x}{2}} \right] \\\ & ={{\tan }^{-1}}\left[ \dfrac{\left( \cos \dfrac{x}{2}+\sin \dfrac{x}{2} \right)\left( \cos \dfrac{x}{2}-\sin \dfrac{x}{2} \right)}{{{\left( \cos \dfrac{x}{2}+\sin \dfrac{x}{2} \right)}^{2}}} \right] \\\ & ={{\tan }^{-1}}\left[ \dfrac{\cos \dfrac{x}{2}-\sin \dfrac{x}{2}}{\cos \dfrac{x}{2}+\sin \dfrac{x}{2}} \right] \\\ \end{aligned}$$ Dividing the numerator and denominator by $\cos \dfrac{x}{2}$ we get, $$\begin{aligned} & ={{\tan }^{-1}}\left[ \dfrac{\dfrac{\cos \dfrac{x}{2}}{\cos \dfrac{x}{2}}-\dfrac{\sin \dfrac{x}{2}}{\cos \dfrac{x}{2}}}{\dfrac{\cos \dfrac{x}{2}}{\cos \dfrac{x}{2}}+\dfrac{\sin \dfrac{x}{2}}{\cos \dfrac{x}{2}}} \right] \\\ & ={{\tan }^{-1}}\left[ \dfrac{1-\tan \dfrac{x}{2}}{1+\tan \dfrac{x}{2}} \right] \\\ & ={{\tan }^{-1}}\left[ \dfrac{\tan \dfrac{\pi }{4}-\tan \dfrac{x}{2}}{1+\tan \dfrac{\pi }{4}.\tan \dfrac{x}{2}} \right] \\\ \end{aligned}$$ Using $\tan \left( x-y \right)=\dfrac{\tan x-\tan y}{1+\tan x\tan y}$, we get, $\begin{aligned} & ={{\tan }^{-1}}\left[ \tan \left( \dfrac{\pi }{4}-\dfrac{x}{2} \right) \right] \\\ & =\dfrac{\pi }{4}-\dfrac{x}{2} \\\ \end{aligned}$ So, the final answer is $\dfrac{\pi }{4}-\dfrac{x}{2}$. **Note:** While solving these type of questions you have to be careful about the formulas of $\tan \left( x\pm y \right)$ or $\sin 2x$ and $\cos 2x$, because if any one of them will be wrong or any sign will be wrong, then we can solve the questions completely, but the answer will be totally wrong.