Question
Mathematics Question on Determinants
Solve system of linear equations, using matrix method.
2x+3y+3z=5
x-2y+z=-4
3x-y-2z=3
Answer
The given system of equations can be written in the form of AX=B, where
A=2\1\33−2−131−2,X=x\y\zand B=5−4\3.
Now, |A|=2(4+1)-3(-2-3)+3(-1+6)=10+15+15=40≠0
Thus, A is non-singular.
Therefore, its inverse exists.
Now, A11=5, A12=5, A13=5
A21=3, A22=-13, A23=11
A31=9, A32=1, A33=-7
Now, A-1=∣A∣1(adj A)=\frac{1}{40}$$\begin{bmatrix}5&3&9\\\5&-13&1\\\5&11&-7\end{bmatrix}
∴X=A-1 B=\frac{1}{40}$$\begin{bmatrix}5&3&9\\\5&-13&1\\\5&11&-7\end{bmatrix}$$\begin{bmatrix}5\\\\-4\\\3\end{bmatrix}
⇒ x\y\z=401[25−12+27\25+52+3\25−44−21=1\2−1
Hence,x=1,y=2and z=-1.