Question
Mathematics Question on Determinants
Solve system of linear equations, using matrix method.
x-y+z=4
2x+y-3z=0
x+y+z=2
Answer
The given system of equations can be written in the form of AX=B, where
A=1\2\1−1111−31,X= x\y\zand B=4\0\2.
Now, |A|=1(1+3)+1(2+3)+1(2-1)=4+5+1=10≠0
Thus, A is non-singular.
Therefore, its inverse exists.
Now,A11=4, A12=-5, A13=1, A21=2, A22=0, A23=-2, A31=2, A32=5, A33=3
Now, A-1=∣A∣1(adj A)=\frac{1}{10}$$\begin{bmatrix}4&2&2\\\\-5&0&5\\\1&-2&3\end{bmatrix}
∴X=A-1B=\frac{1}{10}$$\begin{bmatrix}4&2&2\\\\-5&0&5\\\1&-2&3\end{bmatrix}$$\begin{bmatrix}4\\\0\\\2\end{bmatrix}
⇒x\y\z=\frac{1}{10}$$\begin{bmatrix}16+0+4\\\\-20+0+10\\\4+0+6\end{bmatrix}
=\frac{1}{10}$$\begin{bmatrix}20\\\\-10\\\10\end{bmatrix}=2−1\1
Hence, x=2,y=-1and z=1.