Question
Mathematics Question on Determinants
Solve system of linear equations, using matrix method.
2x+y+z=1
x-2y-z=23
3y-5z=9
The given system of equations can be written in the form of AX=B, where
A=2\1\01−231−1−5,X=x\y\zand B=123\9.
Now, |A|=2(10+3)-1(-5-3)+0=2(13)-1(-8)=26+8=34≠0
Thus, A is non-singular.
Therefore, its inverse exists.
Now, A11=13, A12=5, A13=3
A21=8, A22=-10, A23=-6
A31=1, A32=3, A33=-5
Now, A-1=∣A∣1(adj A)=\frac{1}{34}$$\begin{bmatrix}13&8&1\\\5&-10&3\\\3&-6&-5\end{bmatrix}
∴X=A-1 B=\frac{1}{34}$$\begin{bmatrix}13&8&1\\\5&-10&3\\\3&-6&-5\end{bmatrix}$$\begin{bmatrix}1\\\\\frac{3}{2}\\\9\end{bmatrix}
⇒x\y\z=\frac{1}{34}$$\begin{bmatrix}13+12+9\\\5-15+27\\\3-9-45\end{bmatrix}
=\frac{1}{34}$$\begin{bmatrix}34\\\17\\\\-51\end{bmatrix}=121−23
Hence, x=1,y=21 and z=−23.