Question
Mathematics Question on Determinants
Solve system of linear equations, using matrix method.
4x-3y=3
3x-5y=7
Answer
The given system of equations can be written in the form of AX=B, where
A=[4\3−3−5],X=[x\y]and B=[3\7].
Now, |A|=-20+9=-11≠0
Thus, A is non-singular.
Therefore, its inverse exists.
Now,A-1=∣A∣1adj A=-111[5-334]=\frac{1}{11}$$\begin{bmatrix}5&-3\\\3&-4\end{bmatrix}
∴X=A-1 B=\frac{1}{11}$$\begin{bmatrix}5&-3\\\3&-4\end{bmatrix}$$\begin{bmatrix}3\\\7\end{bmatrix}
\Rightarrow \begin{bmatrix}x\\\y\end{bmatrix}=\frac{1}{11}$$\begin{bmatrix}5&-3\\\3&-4\end{bmatrix}$$\begin{bmatrix}3\\\7\end{bmatrix}=\frac{1}{11}$$\begin{bmatrix}15-21\\\9-28\end{bmatrix}
=\frac{1}{11}$$\begin{bmatrix}-6\\\\-19\end{bmatrix}=−116−1119
Hence, x=−116andy=−1119