Solveeit Logo

Question

Mathematics Question on Determinants

Solve system of linear equations, using matrix method.
2x-y=-2
3x+4y=3

Answer

The given system of equations can be written in the form of AX=B, where
A=[21\34]\begin{bmatrix}2&-1\\\3&4\end{bmatrix},X =[x\y]\begin{bmatrix}x\\\y\end{bmatrix}and B=[2\3]\begin{bmatrix}-2\\\3\end{bmatrix}
Now, |A|=8+3=11≠0
Thus, A is non-singular.
Therefore, its inverse exists.

Now, A-1=1A\frac{1}{\mid A\mid}adj A=\frac{1}{11}$$\begin{bmatrix}4&1\\\\-3&2\end{bmatrix}

∴X=A-1 B=\frac{1}{11}$$\begin{bmatrix}4&1\\\\-3&2\end{bmatrix}$$\begin{bmatrix}-2\\\3\end{bmatrix}

[x\y]\Rightarrow\begin{bmatrix}x\\\y\end{bmatrix}= \frac{1}{11}$$\Rightarrow\begin{bmatrix}-8+3\\\6+6\end{bmatrix}

=\frac{1}{11}$$\Rightarrow\begin{bmatrix}-5\\\12\end{bmatrix}=[5111211]\begin{bmatrix}\frac{-5}{11}\\\\\frac{12}{11}\end{bmatrix}

Hence, x=511-\frac{5}{11} and y=1211\frac{12}{11}