Solveeit Logo

Question

Question: Solve \(\sin x-3\sin 2x+\sin 3x=\cos x-3\cos 2x+\cos 3x\)...

Solve sinx3sin2x+sin3x=cosx3cos2x+cos3x\sin x-3\sin 2x+\sin 3x=\cos x-3\cos 2x+\cos 3x

Explanation

Solution

Hint: Use sinx+siny=2sin(x+y2)cos(xy2)\sin x+\sin y=2\sin \left( \dfrac{x+y}{2} \right)\cos \left( \dfrac{x-y}{2} \right) and cosx+cosy=2cos(x+y2)cos(xy2)\cos x+\cos y=2\cos \left( \dfrac{x+y}{2} \right)\cos \left( \dfrac{x-y}{2} \right). Combine sinx and sin3x and cosx and cos3x using the above formulae. Simplify and form two sub trigonometric equations.

Complete Step-by-step answer:
Solve the individual trigonometric equation and combine the result. Use the fact that the general solution of the equation cosx=cosy is given by x=2nπ±y,nZx=2n\pi \pm y,n\in \mathbb{Z} and that of tanx = tany is given by x=nπ+y,nZx=n\pi +y,n\in \mathbb{Z}.

We know that sinx+siny=2sin(x+y2)cos(xy2)\sin x+\sin y=2\sin \left( \dfrac{x+y}{2} \right)\cos \left( \dfrac{x-y}{2} \right)
Replace x by x and y by 3x, we get
sinx+sin3x=2sin(3x+x2)cos(x3x2)=2sin2xcosx\sin x+\sin 3x=2\sin \left( \dfrac{3x+x}{2} \right)\cos \left( \dfrac{x-3x}{2} \right)=2\sin 2x\cos x
We know that cosx+cosy=2cos(x+y2)cos(xy2)\cos x+\cos y=2\cos \left( \dfrac{x+y}{2} \right)\cos \left( \dfrac{x-y}{2} \right)
Replace x by x and y by 3x, we get
cosx+cos3x=2cos(x+3x2)cos(x3x2)=2cos2xcosx\cos x+\cos 3x=2\cos \left( \dfrac{x+3x}{2} \right)\cos \left( \dfrac{x-3x}{2} \right)=2\cos 2x\cos x.
Hence we have LHS =sinx3sin2x+sin3x=2sin2xsinx3sin2x=\sin x-3\sin 2x+\sin 3x=2\sin 2x\sin x-3\sin 2x
Taking sin2x common, we get
LHS =sin2x(2cosx3)=\sin 2x\left( 2\cos x-3 \right)
Also, RHS =cosx3cos2x+cos3x=2cos2xcosx3cos2x=\cos x-3\cos 2x+\cos 3x=2\cos 2x\cos x-3\cos 2x
Taking cos2x common, we get
RHS =cos2x(2cosx3)=\cos 2x\left( 2\cos x-3 \right)
Hence the given trigonometric equation becomes
sin2x(2cosx3)=cos2x(2cosx3)\sin 2x\left( 2\cos x-3 \right)=\cos 2x\left( 2\cos x-3 \right)
Transposing the term on RHS to LHS, we get
sin2x(2cosx3)cos2x(2cosx3)=0\sin 2x\left( 2\cos x-3 \right)-\cos 2x\left( 2\cos x-3 \right)=0
Taking 2cosx-3 common from the terms in LHS, we get
(2cosx3)(sin2xcos2x)=0\left( 2\cos x-3 \right)\left( \sin 2x-\cos 2x \right)=0
Now we know that if ab = 0, then a = 0 or b = 0 {Zero product property}
Hence 2cosx3=02\cos x-3=0 or sin2xcos2x\sin 2x-\cos 2x
Solving 2cosx-3 = 0:
Adding 3 on both sides, we get
2cosx=32\cos x=3
Dividing both sides by 2, we get
cosx=32\cos x=\dfrac{3}{2}
Since 1cosx1,xR-1\le \cos x\le 1,\forall x\in \mathbb{R}, hence we have there exists no real x such that cosx=32\cos x=\dfrac{3}{2}.
Hence there exists no solution of the equation 2cosx-3=0
Solving sin2x-cos2x = 0
Adding cos2x on both sides, we get
sin2x=cos2x
Dividing both sides by cos2x and using sinxcosx=tanx\dfrac{\sin x}{\cos x}=\tan x, we get
tan2x = 1
Now we know that tan(π4)=1\tan \left( \dfrac{\pi }{4} \right)=1
Hence we have
tan2x=tan(π4)\tan 2x=\tan \left( \dfrac{\pi }{4} \right)
We know that the general solution of the equation tanx=tany\tan x=\tan y is given by x=nπ+y,nZx=n\pi +y,n\in \mathbb{Z}
Hence we have
2x=nπ+π4,nZ2x=n\pi +\dfrac{\pi }{4},n\in \mathbb{Z}
Dividing both sides by 2, we get
x=nπ2+π8,nZx=\dfrac{n\pi }{2}+\dfrac{\pi }{8},n\in \mathbb{Z}
Hence the general solution of the equation sinx3sin2x+sin3x=cosx3cos2x+cos3x\sin x-3\sin 2x+\sin 3x=\cos x-3\cos 2x+\cos 3x is x=nπ2+π8,nZx=\dfrac{n\pi }{2}+\dfrac{\pi }{8},n\in \mathbb{Z}

Note: [1] In questions of this type think about which combinations of two angles will give the third angle. Like, in this case, we observe that x+3x2=2x\dfrac{x+3x}{2}=2x. Hence we combined sinx and sin3x and cosx and cos3x.
[2] Note that sine, cosine, secant and cosecant do not have Range R. Hence before writing a solution of the equation, think whether that value lies in the domain or not. Consider we are solving cosx=a\cos x=a.
We should not directly write the solution is x=2nπ±arccos(a)x=2n\pi \pm \arccos \left( a \right). We must first check first whether a is in the domain or not as done above.
[3] Always verify your solution for a few values of n.