Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

Solve: sin(tan1x)=x<1sin(tan^{-1}x)=|x|<1 is equal to

A

x1x2\frac {x}{\sqrt{1-x^2}}

B

11x2\frac {1}{\sqrt{1-x^2}}

C

x1+x2\frac {x}{\sqrt{1+x^2}}

D

x1+x2\frac {x}{\sqrt{1+x^2}}

Answer

x1+x2\frac {x}{\sqrt{1+x^2}}

Explanation

Solution

Let tan−1x = y.
Then, tan y = x    \impliessin y = x1+x2\frac {x}{\sqrt{1+x^2}}
y = sin-1\frac {x}{\sqrt{1+x^2}}$$\impliestan-1x = sin-1x1+x2\frac {x}{\sqrt{1+x^2}}
Therefore, sin(tan-1x) = sin(sin-1x1+x2\frac {x}{\sqrt{1+x^2}}) =x1+x2\frac {x}{\sqrt{1+x^2}}

Hence, the correct answer is (D): x1+x2\frac {x}{\sqrt{1+x^2}}