Question
Mathematics Question on Inverse Trigonometric Functions
Solve: sin(tan−1x)=∣x∣<1 is equal to
A
1−x2x
B
1−x21
C
1+x2x
D
1+x2x
Answer
1+x2x
Explanation
Solution
Let tan−1x = y.
Then, tan y = x⟹sin y = 1+x2x
y = sin-1\frac {x}{\sqrt{1+x^2}}$$\impliestan-1x = sin-11+x2x
Therefore, sin(tan-1x) = sin(sin-11+x2x) =1+x2x
Hence, the correct answer is (D): 1+x2x