Solveeit Logo

Question

Question: Solve: \[\sin \left( {{\tan }^{-1}}x \right),\left| x \right|<1\] is equal to A. \[\dfrac{x}{\sqrt...

Solve: sin(tan1x),x<1\sin \left( {{\tan }^{-1}}x \right),\left| x \right|<1 is equal to
A. x1x2\dfrac{x}{\sqrt{1-{{x}^{2}}}}
B. 11x2\dfrac{1}{\sqrt{1-{{x}^{2}}}}
C. 11+x2\dfrac{1}{\sqrt{1+{{x}^{2}}}}
D. x1+x2\dfrac{x}{\sqrt{1+{{x}^{2}}}}

Explanation

Solution

Hint : To solve the question, we need to assume that the value of tan1x{{\tan }^{-1}}x is  !!θ!! \text{ }\\!\\!\theta\\!\\!\text{ } and then place the value in place of tan1x{{\tan }^{-1}}x to find the value of sin !!θ!! \sin \text{ }\\!\\!\theta\\!\\!\text{ } and remove  !!θ!! \text{ }\\!\\!\theta\\!\\!\text{ } by the trigonometric value of tan1x{{\tan }^{-1}}x . The formula for tan !!θ!! \tan \text{ }\\!\\!\theta\\!\\!\text{ } is
tan !!θ!! =heightbase\tan \text{ }\\!\\!\theta\\!\\!\text{ }=\dfrac{\text{height}}{\text{base}} of an assumed triangle and then find the value of  !!θ!! \text{ }\\!\\!\theta\\!\\!\text{ } and place it with sin !!θ!! \sin \text{ }\\!\\!\theta\\!\\!\text{ } to find the value of sin !!θ!! \sin \text{ }\\!\\!\theta\\!\\!\text{ } in terms of xx .

Complete step-by-step answer :
Let us first draw a triangle based on the question with  !!θ!! \text{ }\\!\\!\theta\\!\\!\text{ } as angle at point A.

where tan1x{{\tan }^{-1}}x which means if we equate the value of xx in terms of  !!θ!! \text{ }\\!\\!\theta\\!\\!\text{ } , we get the value of xx as:
tan1x= !!θ!! \Rightarrow {{\tan }^{-1}}x=\text{ }\\!\\!\theta\\!\\!\text{ }
x=tan !!θ!! \Rightarrow x=\tan \text{ }\\!\\!\theta\\!\\!\text{ }
Now according to the trigonometric formula, the value of the tangent\text{tangent} is given as:
tan !!θ!! =heightbase\tan \text{ }\\!\\!\theta\\!\\!\text{ }=\dfrac{\text{height}}{\text{base}}
Equating the value of tan !!θ!! =x\tan \text{ }\\!\\!\theta\\!\\!\text{ }=x with tan !!θ!! =heightbase\tan \text{ }\\!\\!\theta\\!\\!\text{ }=\dfrac{\text{height}}{\text{base}} , we get the value of the ratio of heightbase\dfrac{\text{height}}{\text{base}} as x1\dfrac{x}{1} .
Therefore, we can say that the height of the triangle is xx and the base is 11 . Using Pythagoras theorem we can find the value of the hypotenuse of the triangle as:
Hypotenuse =height2+base2=\sqrt{\text{heigh}{{\text{t}}^{2}}+\text{bas}{{\text{e}}^{2}}}
x2+12\Rightarrow \sqrt{{{x}^{2}}+{{\text{1}}^{2}}}
Now as we have all the values i.e. height, base and hypotenuse we can find the value of sin(tan1x)\sin \left( {{\tan }^{-1}}x \right) by replacing it with sin !!θ!! \sin \text{ }\\!\\!\theta\\!\\!\text{ } and after that we find the value of sin !!θ!! \sin \text{ }\\!\\!\theta\\!\\!\text{ } as:
sin !!θ!! =heighthypotenuse\sin \text{ }\\!\\!\theta\\!\\!\text{ }=\dfrac{\text{height}}{\text{hypotenuse}}
Placing the values of height and hypotenuse in the above formula, we get the value of sin !!θ!! \sin \text{ }\\!\\!\theta\\!\\!\text{ } as:
sin !!θ!! =xx2+1\Rightarrow \sin \text{ }\\!\\!\theta\\!\\!\text{ }=\dfrac{x}{\sqrt{{{x}^{2}}+1}}
Now on the L.H.S, the value of sin !!θ!! \sin \text{ }\\!\\!\theta\\!\\!\text{ } can be replaced by sin(tan1x)\sin \left( {{\tan }^{-1}}x \right) with tan1x= !!θ!! {{\tan }^{-1}}x=\text{ }\\!\\!\theta\\!\\!\text{ } . Hence, the value of sin(tan1x)\sin \left( {{\tan }^{-1}}x \right) is xx2+1\dfrac{x}{\sqrt{{{x}^{2}}+1}} .
So, the correct answer is “ xx2+1\dfrac{x}{\sqrt{{{x}^{2}}+1}} ”.

Note : Student may make mistake as the value of inverse is such as tan1x=1tanx{{\tan }^{-1}}x=\dfrac{1}{\tan x} , but (tanx)1=1tanx{{\left( \tan x \right)}^{-1}}=\dfrac{1}{\tan x} . Hence such mistakes should be avoided and the angle should be taken in any one point of the triangle like A for both tan !!θ!! \tan \text{ }\\!\\!\theta\\!\\!\text{ } and sin !!θ!! \sin \text{ }\\!\\!\theta\\!\\!\text{ } .