Solveeit Logo

Question

Question: Solve \[\sin \left( {2{{\sin }^{ - 1}}\sqrt {\dfrac{{63}}{{65}}} } \right) = \] A.\[\dfrac{{2\sqrt...

Solve sin(2sin16365)=\sin \left( {2{{\sin }^{ - 1}}\sqrt {\dfrac{{63}}{{65}}} } \right) =
A.212665\dfrac{{2\sqrt {126} }}{{65}}
B.412665\dfrac{{4\sqrt {126} }}{{65}}
C.86365\dfrac{{8\sqrt {63} }}{{65}}
D.6365\dfrac{{63}}{{65}}

Explanation

Solution

Hint : In the question related to the inverse trigonometric ratios we solve it by using trigonometric ratios values by converting them to required angles of specific values like (sin30=12)\left( {\sin {{30}^ \circ } = \dfrac{1}{2}} \right) , but when values of ratios (6365)\left( {\dfrac{{63}}{{65}}} \right) are inconvertible we have use identity according to the questions

Complete step-by-step answer :
Given : sin(2sin16365)\sin \left( {2{{\sin }^{ - 1}}\sqrt {\dfrac{{63}}{{65}}} } \right) , on rearranging the expression we get ,
=sin(sin16365+sin16365)= \sin \left( {{{\sin }^{ - 1}}\sqrt {\dfrac{{63}}{{65}}} + {{\sin }^{ - 1}}\sqrt {\dfrac{{63}}{{65}}} } \right)
Now , using the identity for sin1x+sin1y=sin1[x1y2+y1x2]{\sin ^{ - 1}}x + {\sin ^{ - 1}}y = {\sin ^{ - 1}}\left[ {x\sqrt {1 - {y^2}} + y\sqrt {1 - {x^2}} } \right] we get ,
=sin[sin1(63651(6365)2+63651(6365)2)]= \sin \left[ {{{\sin }^{ - 1}}\left( {\sqrt {\dfrac{{63}}{{65}}} \sqrt {1 - {{\left( {\sqrt {\dfrac{{63}}{{65}}} } \right)}^2}} + \sqrt {\dfrac{{63}}{{65}}} \sqrt {1 - {{\left( {\sqrt {\dfrac{{63}}{{65}}} } \right)}^2}} } \right)} \right] ,
Remember that the angles are already present under root . So , on solving we get ,
=sin[sin1(6365656365+6365656365)]= \sin \left[ {{{\sin }^{ - 1}}\left( {\sqrt {\dfrac{{63}}{{65}}} \sqrt {\dfrac{{65 - 63}}{{65}}} + \sqrt {\dfrac{{63}}{{65}}} \sqrt {\dfrac{{65 - 63}}{{65}}} } \right)} \right] , on solving further we get ,
=sin[sin1(6365265+6365265)]= \sin \left[ {{{\sin }^{ - 1}}\left( {\sqrt {\dfrac{{63}}{{65}}} \sqrt {\dfrac{2}{{65}}} + \sqrt {\dfrac{{63}}{{65}}} \sqrt {\dfrac{2}{{65}}} } \right)} \right]
On simplifying we get ,
=sin[sin1(12665+12665)]= \sin \left[ {{{\sin }^{ - 1}}\left( {\dfrac{{\sqrt {126} }}{{65}} + \dfrac{{\sqrt {126} }}{{65}}} \right)} \right] , on adding we get
=sin[sin1(212665)]= \sin \left[ {{{\sin }^{ - 1}}\left( {\dfrac{{2\sqrt {126} }}{{65}}} \right)} \right]
On simplifying we get ,
=212665= \dfrac{{2\sqrt {126} }}{{65}}
Therefore , the option ( A ) is the correct answer for the given option .
So, the correct answer is “Option A”.

Note: Given : sin(2sin16365)\sin \left( {2{{\sin }^{ - 1}}\sqrt {\dfrac{{63}}{{65}}} } \right)
Now using the identity for 2sin1=sin12x1x22{\sin ^{ - 1}} = {\sin ^{ - 1}}2x\sqrt {1 - {x^2}} we get
=sin(sin1263651(6365)2)= \sin \left( {{{\sin }^{ - 1}}2\sqrt {\dfrac{{63}}{{65}}} \sqrt {1 - {{\left( {\sqrt {\dfrac{{63}}{{65}}} } \right)}^2}} } \right) , on solving we get
=sin(sin126365656365)= \sin \left( {{{\sin }^{ - 1}}2\sqrt {\dfrac{{63}}{{65}}} \sqrt {\dfrac{{65 - 63}}{{65}}} } \right)
On simplifying we get ,
=sin(sin126365265)= \sin \left( {{{\sin }^{ - 1}}2\sqrt {\dfrac{{63}}{{65}}} \sqrt {\dfrac{2}{{65}}} } \right) , on solving we get
=sin[sin1(212665)]= \sin \left[ {{{\sin }^{ - 1}}\left( {\dfrac{{2\sqrt {126} }}{{65}}} \right)} \right]
On rationalizing we get ,
=212665= \dfrac{{2\sqrt {126} }}{{65}} .