Solveeit Logo

Question

Mathematics Question on Trigonometric Identities

Solve sin8x+cos8x=17/32sin^8\, x + cos^8 \,x = 17/32.

A

nπ2\frac{n\pi}{2}, nZn \in Z

B

nπ2±π8\frac{n\pi}{2} \pm \frac{\pi}{8}, nZn \in Z

C

nπ2+π4\frac{n\pi}{2} + \frac{\pi}{4}, nZn \in Z

D

None of these

Answer

nπ2±π8\frac{n\pi}{2} \pm \frac{\pi}{8}, nZn \in Z

Explanation

Solution

Given sin8x+cos8x=1732sin^{8}x+cos^{8}x=\frac{17}{32} (sin4x+cos4x)22sin4xcos4x=1732\Rightarrow \left(sin^{4}x+cos^{4}x\right)^{2}-2sin^{4}\,xcos^{4}x=\frac{17}{32} [(sin2x+cos2x)22sin2xcos2x]22sin4xcos4x\Rightarrow \left[\left(sin^{2}x+cos^{2}x\right)^{2}-2sin^{2}xcos^{2}x\right]^{2}-2sin^{4}xcos^{4}x =1732=\frac{17}{32} 14sin2xcos2x+2sin4xcos4x=1732\Rightarrow 1 - 4sin^{2}x\,cos^{2}x + 2sin^{4}x\, cos^{4}x =\frac{17}{32} 1(2sinxcosx)2+18(2sinxcosx)4=1732\Rightarrow 1-\left(2sinxcosx\right)^{2}+\frac{1}{8}\left(2sinxcosx\right)^{4}=\frac{17}{32} 1sin22x+18sin42x1732=0\Rightarrow 1-sin^{2}\,2x+\frac{1}{8} sin^{4}2x-\frac{17}{32}=0 4sin42x32sin22x+15=0\Rightarrow 4sin^{4}\,2x-32sin^{2}\,2x+15=0 (2sin22x15)(2sin22x1)=0\Rightarrow \left(2sin^{2}\,2x-15\right)\left(2sin^{2}\,2x-1\right)=0 2sin22x1=0(sin22x152)\Rightarrow 2sin^{2}2x-1=0\quad\left(\because sin^{2}\,2x \ne\frac{15}{2}\right) sin22x=12\Rightarrow sin^{2}2x=\frac{1}{2} sin22x=sin2π4\Rightarrow sin^{2}2x=sin^{2} \frac{\pi}{4} 2x=nπ±π4\Rightarrow 2x=n\pi \pm\frac{\pi}{4} x=nπ2±π8\Rightarrow x=\frac{n\pi}{2} \pm\frac{\pi}{8}, nZn \in Z.