Solveeit Logo

Question

Question: Solve \( sin[3si{n^{( - 1)}}(\dfrac{1}{5})] = \) \( \) \[\left( 1 \right)\] \[\dfrac{{71}}{{125}}...

Solve sin[3sin(1)(15)]=sin[3si{n^{( - 1)}}(\dfrac{1}{5})] =
(1)\left( 1 \right) 71125\dfrac{{71}}{{125}}
(2)\left( 2 \right) 74125\dfrac{{74}}{{125}}
(3)\left( 3 \right) 35\dfrac{3}{5}
(4)\left( 4 \right) 12\dfrac{1}{2}

Explanation

Solution

Hint : We have to find the value of sin[3sin(1)(15)]sin[3si{n^{( - 1)}}(\dfrac{1}{5})] . We solve this by using the concept of inverse trigonometry and using the sin triple angle formula . We would simply equate the value of sin(1)si{n^{( - 1)}} to a variable and apply the sin triple angle formula This will give the required .

Complete step-by-step answer :
All the trigonometric functions are classified into two categories or types as either sine function or cosine function . All the functions which lie in the category of sine functions are sin , cosec and tan functions on the other hand the functions which lie in the category of cosine functions are cos , sec and cot functions . The trigonometric functions are classified into these two categories on the basis of their property which is stated as : when the value of angle is substituted by the negative value of the angle then we get the negative value for the functions in the sine family and a positive value for the functions in the cosine family .
Given : sin[3sin(1)(15)]sin[3si{n^{( - 1)}}(\dfrac{1}{5})] ——(1)
Let us consider that
sin(1)(15)=xsi{n^{( - 1)}}(\dfrac{1}{5}) = x
Taking sin both sides , we get
15= sin x\dfrac{1}{5} = {\text{ }}sin{\text{ }}x——(2)
Now , putting value (2) in equation (1)
sin[3sin(1)(15)]=sin[3sin(1)sinx]sin[3si{n^{( - 1)}}(\dfrac{1}{5})] = sin[3si{n^{( - 1)}}\sin x]
Also , we know that [sin(1)sinx]=x[si{n^{( - 1)}}\sin x] = x
So ,
sin[3sin(1)(15)]=sin(3x)sin[3si{n^{( - 1)}}(\dfrac{1}{5})] = sin(3x)
Now , using sin triple angle formula
Sin3x=3sinx4sin3xSin3x = 3sinx - 4si{n^3}x
We get ,
sin[3sin(1)(15)]=3sinx4sin3xsin[3si{n^{( - 1)}}(\dfrac{1}{5})] = 3\sin x - 4si{n^3}x ——(3)
Substituting value of sin =15sin{\text{ }} = \dfrac{1}{5} in (3)
sin[3sin(1)(15)]=3×(15)4(15)3sin[3si{n^{( - 1)}}(\dfrac{1}{5})] = 3 \times (\dfrac{1}{5}) - 4{(\dfrac{1}{5})^3}
sin[3sin(1)(15)]=(35)(4125)sin[3si{n^{( - 1)}}(\dfrac{1}{5})] = (\dfrac{3}{5}) - (\dfrac{4}{{125}})
On solving we get,
sin[3sin(1)(15)]=(7125)sin[3si{n^{( - 1)}}(\dfrac{1}{5})] = (\dfrac{{71}}{{25}})
Thus , the correct option is (1)\left( 1 \right)
So, the correct answer is “Option 1”.

Note: We used the concept of inverse trigonometric functions and formula of sin triple angle .
Also various inverse functions are :
sin(1)(x)=sin(1)(x),x[1,1]si{n^{( - 1)}}( - x) = - si{n^{( - 1)}}(x),x \in [ - 1,1]
cos(1)(x)=πcos(1)(x),x[1,1]co{s^{( - 1)}}( - x) = \pi - co{s^{( - 1)}}(x),x \in [ - 1,1]
tan(1)(x)=tan(1)(x),xRta{n^{( - 1)}}( - x) = - ta{n^{( - 1)}}(x),x \in R
cosec(1)(x)=cosec(1)(x),x1cose{c^{( - 1)}}( - x) = - cose{c^{( - 1)}}(x),|x| \geqslant 1