Solveeit Logo

Question

Question: Solve: \[{\sin ^2}\dfrac{{2\pi }}{3} + {\cos ^2}\dfrac{{5\pi }}{6} - {\tan ^2}\dfrac{{3\pi }}{4}\]...

Solve: sin22π3+cos25π6tan23π4{\sin ^2}\dfrac{{2\pi }}{3} + {\cos ^2}\dfrac{{5\pi }}{6} - {\tan ^2}\dfrac{{3\pi }}{4}

Explanation

Solution

Here, we are given a trigonometric expression and we need to find the value of it. We will use sin(πx)=sinx\sin (\pi - x) = \sin x, cos(πx)=cosx\cos (\pi - x) = - \cos x and tan(πx)=tanx\tan (\pi - x) = - \tan x . We will also the trigonometry ratios values too and so one should know those values to solve any question. Or we can substitute the value of π=180\pi = {180^\circ } and solve this question too, get the final output. The angles are either measured in radians or degrees. The trigonometric ratios of a triangle are also called the trigonometric functions.

Complete step by step answer: Given that,
sin22π3+cos25π6tan23π4=sin2(ππ3)+cos2(ππ6)tan2(ππ4){\sin ^2}\dfrac{{2\pi }}{3} + {\cos ^2}\dfrac{{5\pi }}{6} - {\tan ^2}\dfrac{{3\pi }}{4}= {\sin ^2}(\pi - \dfrac{\pi }{3}) + {\cos ^2}(\pi - \dfrac{\pi }{6}) - {\tan ^2}(\pi - \dfrac{\pi }{4})
We know that,
sin(πx)=sinx\sin (\pi - x) = \sin x
cos(πx)=cosx\Rightarrow \cos (\pi - x) = - \cos x
tan(πx)=tanx\Rightarrow \tan (\pi - x) = - \tan x
Using this above trigonometry rules, we will get,
sin2π3+(cos2π6)(tan2π4){\sin ^2}\dfrac{\pi }{3} + ( - {\cos ^2}\dfrac{\pi }{6}) - ( - {\tan ^2}\dfrac{\pi }{4})
(sinπ3)2+(cosπ6)2(tanπ4)2\Rightarrow {(\sin \dfrac{\pi }{3})^2} + {( - \cos \dfrac{\pi }{6})^2} - {( - \tan \dfrac{\pi }{4})^2}

We also know that, the trigonometry values of:
sinπ3=32\sin \dfrac{\pi }{3} = \dfrac{{\sqrt 3 }}{2}
cosπ6=32\Rightarrow \cos \dfrac{\pi }{6} = \dfrac{{\sqrt 3 }}{2}
tanπ4=1\Rightarrow \tan \dfrac{\pi }{4} = 1
Substituting these values in the above expression, we will get,
(sinπ3)2+(cosπ6)2(tanπ4)2=(32)2+(32)2(1)2{(\sin \dfrac{\pi }{3})^2} + {( - \cos \dfrac{\pi }{6})^2} - {( - \tan \dfrac{\pi }{4})^2} = {(\dfrac{{\sqrt 3 }}{2})^2} + {( - \dfrac{{\sqrt 3 }}{2})^2} - {( - 1)^2}
Removing the brackets, we get,
(sinπ3)2+(cosπ6)2(tanπ4)2=34+341\Rightarrow {(\sin \dfrac{\pi }{3})^2} + {( - \cos \dfrac{\pi }{6})^2} - {( - \tan \dfrac{\pi }{4})^2}= \dfrac{3}{4} + \dfrac{3}{4} - 1
On evaluating this, we will get,
(sinπ3)2+(cosπ6)2(tanπ4)2=641\Rightarrow{(\sin \dfrac{\pi }{3})^2} + {( - \cos \dfrac{\pi }{6})^2} - {( - \tan \dfrac{\pi }{4})^2} = \dfrac{6}{4} - 1
(sinπ3)2+(cosπ6)2(tanπ4)2=644\Rightarrow{(\sin \dfrac{\pi }{3})^2} + {( - \cos \dfrac{\pi }{6})^2} - {( - \tan \dfrac{\pi }{4})^2} = \dfrac{{6 - 4}}{4}
(sinπ3)2+(cosπ6)2(tanπ4)2=24\Rightarrow{(\sin \dfrac{\pi }{3})^2} + {( - \cos \dfrac{\pi }{6})^2} - {( - \tan \dfrac{\pi }{4})^2}= \dfrac{2}{4}
(sinπ3)2+(cosπ6)2(tanπ4)2=12\therefore {(\sin \dfrac{\pi }{3})^2} + {( - \cos \dfrac{\pi }{6})^2} - {( - \tan \dfrac{\pi }{4})^2} = \dfrac{1}{2}

Another Method:
sin22π3+cos25π6tan23π4{\sin ^2}\dfrac{{2\pi }}{3} + {\cos ^2}\dfrac{{5\pi }}{6} - {\tan ^2}\dfrac{{3\pi }}{4}
We know that, π=180\pi = {180^\circ } and so substituting this value of π\pi , we will get,
sin2(2×1803)+cos2(5×1806)tan2(3×1804){\sin ^2}(\dfrac{{2 \times 180}}{3}) + {\cos ^2}(\dfrac{{5 \times 180}}{6}) - {\tan ^2}(\dfrac{{3 \times 180}}{4})
sin2120+cos2150tan2135\Rightarrow {\sin ^2}{120^\circ } + {\cos ^2}{150^\circ } - {\tan ^2}{135^\circ }
sin2(18060)+cos2(18030)tan2(18045)\Rightarrow {\sin ^2}{(180 - 60)^\circ } + {\cos ^2}{(180 - 30)^\circ } - {\tan ^2}{(180 - 45)^\circ }
sin260+(cos230)(tan245)\Rightarrow {\sin ^2}{60^\circ } + ( - {\cos ^2}{30^\circ }) - ( - {\tan ^2}{45^\circ })
(sin60)2+(cos30)2(tan45)2\Rightarrow {(\sin {60^\circ })^2} + {( - \cos {30^\circ })^2} - {( - \tan {45^\circ })^2}
Substituting the values of the trigonometry ratios, we will get,
(32)2+(32)2(1)2=12{(\dfrac{{\sqrt 3 }}{2})^2} + {( - \dfrac{{\sqrt 3 }}{2})^2} - {( - 1)^2}=\dfrac{1}{2}

Hence, for the given trigonometric expression, the value of sin22π3+cos25π6tan23π4=12{\sin ^2}\dfrac{{2\pi }}{3} + {\cos ^2}\dfrac{{5\pi }}{6} - {\tan ^2}\dfrac{{3\pi }}{4} = \dfrac{1}{2}.

Note: Here, we will study the relationship between the sides and angles of a right-angled triangle. Trigonometry is one of those divisions in mathematics that helps in finding the angles and missing sides of a triangle with the help of trigonometric ratios. The trigonometric ratios such as sine, cosine and tangent of these angles are easy to memorize.To find these angels we have to draw a right-angled triangle, in which one of the acute angles will be the corresponding trigonometry angle.