Question
Question: Solve: \[{\sin ^2}\dfrac{{2\pi }}{3} + {\cos ^2}\dfrac{{5\pi }}{6} - {\tan ^2}\dfrac{{3\pi }}{4}\]...
Solve: sin232π+cos265π−tan243π
Solution
Here, we are given a trigonometric expression and we need to find the value of it. We will use sin(π−x)=sinx, cos(π−x)=−cosx and tan(π−x)=−tanx . We will also the trigonometry ratios values too and so one should know those values to solve any question. Or we can substitute the value of π=180∘ and solve this question too, get the final output. The angles are either measured in radians or degrees. The trigonometric ratios of a triangle are also called the trigonometric functions.
Complete step by step answer: Given that,
sin232π+cos265π−tan243π=sin2(π−3π)+cos2(π−6π)−tan2(π−4π)
We know that,
sin(π−x)=sinx
⇒cos(π−x)=−cosx
⇒tan(π−x)=−tanx
Using this above trigonometry rules, we will get,
sin23π+(−cos26π)−(−tan24π)
⇒(sin3π)2+(−cos6π)2−(−tan4π)2
We also know that, the trigonometry values of:
sin3π=23
⇒cos6π=23
⇒tan4π=1
Substituting these values in the above expression, we will get,
(sin3π)2+(−cos6π)2−(−tan4π)2=(23)2+(−23)2−(−1)2
Removing the brackets, we get,
⇒(sin3π)2+(−cos6π)2−(−tan4π)2=43+43−1
On evaluating this, we will get,
⇒(sin3π)2+(−cos6π)2−(−tan4π)2=46−1
⇒(sin3π)2+(−cos6π)2−(−tan4π)2=46−4
⇒(sin3π)2+(−cos6π)2−(−tan4π)2=42
∴(sin3π)2+(−cos6π)2−(−tan4π)2=21
Another Method:
sin232π+cos265π−tan243π
We know that, π=180∘ and so substituting this value of π , we will get,
sin2(32×180)+cos2(65×180)−tan2(43×180)
⇒sin2120∘+cos2150∘−tan2135∘
⇒sin2(180−60)∘+cos2(180−30)∘−tan2(180−45)∘
⇒sin260∘+(−cos230∘)−(−tan245∘)
⇒(sin60∘)2+(−cos30∘)2−(−tan45∘)2
Substituting the values of the trigonometry ratios, we will get,
(23)2+(−23)2−(−1)2=21
Hence, for the given trigonometric expression, the value of sin232π+cos265π−tan243π=21.
Note: Here, we will study the relationship between the sides and angles of a right-angled triangle. Trigonometry is one of those divisions in mathematics that helps in finding the angles and missing sides of a triangle with the help of trigonometric ratios. The trigonometric ratios such as sine, cosine and tangent of these angles are easy to memorize.To find these angels we have to draw a right-angled triangle, in which one of the acute angles will be the corresponding trigonometry angle.