Solveeit Logo

Question

Question: Solve: \( {{\sin }^{2}}{{60}^{\circ }}+{{\cos }^{2}}\left( 3x-{{9}^{\circ }} \right)=1 \) ....

Solve: sin260+cos2(3x9)=1{{\sin }^{2}}{{60}^{\circ }}+{{\cos }^{2}}\left( 3x-{{9}^{\circ }} \right)=1 .

Explanation

Solution

Hint: At first take the term cos2(3x9){{\cos }^{2}}\left( 3x-{{9}^{\circ }} \right) from left to right hand side so we get, sin260=1cos2(3x9){{\sin }^{2}}{{60}^{\circ }}=1-{{\cos }^{2}}\left( 3x-{{9}^{\circ }} \right) after that we will use the identity sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 and use it as 1cos2θ=sin2θ1-{{\cos }^{2}}\theta ={{\sin }^{2}}\theta and then take θ\theta as 3x93x-{{9}^{\circ }} and then further solve it to find value of x.

Complete step-by-step answer:
In the question we are given the equation sin260+cos2(3x9)=1{{\sin }^{2}}{{60}^{\circ }}+{{\cos }^{2}}\left( 3x-{{9}^{\circ }} \right)=1 and we have to find the value of x such that it satisfies the equation.
So, we are given the equation, sin260+cos2(3x9)=1{{\sin }^{2}}{{60}^{\circ }}+{{\cos }^{2}}\left( 3x-{{9}^{\circ }} \right)=1 .
Now we will take cos2(3x9){{\cos }^{2}}\left( 3x-{{9}^{\circ }} \right) left to right hand side so we get,
sin260=1cos2(3x9){{\sin }^{2}}{{60}^{\circ }}=1-{{\cos }^{2}}\left( 3x-{{9}^{\circ }} \right) .
We all know the identity that sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 .
So, we can also write it as sin2θ=1cos2θ{{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta now will take θ\theta as 3x93x-{{9}^{\circ }} so we get,
sin260=1cos2(3x9){{\sin }^{2}}{{60}^{\circ }}=1-{{\cos }^{2}}\left( 3x-{{9}^{\circ }} \right) or, sin260=sin2(3x9){{\sin }^{2}}{{60}^{\circ }}={{\sin }^{2}}\left( 3x-{{9}^{\circ }} \right) .
So from this we can write that 60=3x9{{60}^{\circ }}=3x-{{9}^{\circ }} .
Now subtracting 3x3x from both the sides we get,
603x=3x93x{{60}^{\circ }}-3x=3x-{{9}^{\circ }}-3x or, 603x=9{{60}^{\circ }}-3x=-{{9}^{\circ }} .
Now subtracting 60{{60}^{\circ }} from both the sides we get,
603x60=960{{60}^{\circ }}-3x-{{60}^{\circ }}=-{{9}^{\circ }}-{{60}^{\circ }} or, 3x=69-3x=-69 .
Hence the value of x will be 693\dfrac{-69}{-3} or, 23
So, the answer is 23.

Note: Also we can do this question by another way by directly using the identity that sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 and compare it with sin260+cos2(3x9)=1{{\sin }^{2}}{{60}^{\circ }}+{{\cos }^{2}}\left( 3x-{{9}^{\circ }} \right)=1 . Then we can say that 3x9=603x-{{9}^{\circ }}={{60}^{\circ }} and then solve it to get the value of x.